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Abstract 
Generalized linear models (GLMs) are used when the variance is not constant, and when the errors are 
not normally distributed. Some ecological and entomological response variables invariably suffer from 
these two standard assumptions, and GLMs are excellent at dealing with them. Three distribution 
families of GLM: (1) Linear, (2) Poisson and (3) Gamma, were fitted to the null, reduced and full models 
with the log link function. The data used was derived from a study on the cabbage flea beetle (Psylliodes 
chrysocephala L.). According to the residual deviance (Goodness of Fit) and Akaike information 
criterion (AIC) as an estimator of model quality, it was confirmed that Gamma GLM is the best fit for the 
data set. Both the AIC and deviance were low in the Gamma model, while high values were noted for 
Poisson and Linear GLMs. Our study confirms that severe skewness often exists in data sets pertaining to 
parasitology and entomology. The Gamma distribution provided a better and more robust alternative 
estimator than Poisson and Linear models. Poisson distribution is mostly used to model the count of 
events occurring within a given time interval. Poisson and linear GLMs did not fit well with the data set, 
which was evident by their high scaled deviance (G2). 
 
Keywords: GLM, residuals, null model, reduced model, full model 

 
Introduction 
Non-normal data that deviates from the normal distribution is frequently observed by field 

entomologists, biologists and ecologists. Although Analysis of Variance (ANOVA) have been 

widely used in data analysis, the abundance and incidence data often violate the assumptions 

of ANOVA [1]. Most data pertaining to insect or weed abundance do not meet the assumptions 

of normality and homogeneity of variance [1-4]. Therefore appropriate analytical tools are at 

this moment needed to analyse data that is not normally distributed and non-linear. The 

generalized Linear Model (GLM) thus offers an alternative to address such skewness since it 

provides a unified application to other common statistical procedures [5]. The traditional linear 

model assumes that errors have normal distributions [6]. GLMs as a class of statistical models 

provide an abstract and simplified representations of the real data. They are called GLM since 

they generalize the classical linear models based on the normal distributions [5]. In addition to 

the linear regression component, GLMs include a special exponential family which transforms 

the mean via a “link function” and links the regression part to the mean of one of these 

distributions [6, 7].  

GLM is a combination of systematic and random components of a linear model which has 

three (3) characteristics: (i) a dependent variable z whose distribution with parameter θ as one 

of the class, (ii) a set of independent variables x1, ..., xm and predicted systematic component 

Y=∑=β(iXi), and (iii) the linking function θ=f(Y) connecting the parameter θ of the distribution 

of z with the Y’s of the linear model [6]. Different statistical criteria are used for assessing a 

model quality and best fit. The Analysis of Deviance involving the residual deviance is a good 

test to determine the Goodness of Fit of a model [6, 8, 9]. On the other hand, the Akaike 

information criterion (AIC) estimates the quality of models in the class of both linear and 

Generalized Linear Model (GLM) [10]. Both AIC or the Bayesian information criterion (BIC) 

are used for model comparisons [11]. Burnham and Anderson [12] emphasised the use of AIC 

and BIC for comparing statistical models and transformations. Sileshi [1] and Yabeja [13] used 

the Poisson regression model to analyse the population of psyllid and whitefly population. 
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For this study, we made comparisons among three distribution 

families of GLM using AIC, BIC and residual deviance. 

Linear (gaussian), Poisson, and Gamma distributions used the 

three exponential families. From the AIC and deviance 

analysis, the model with the best fit and good quality was 

considered the best fit for the pest data. These three 

distribution families were used because they deal with real 

numbers (> 0). All data collected from the pest study were 

real numbers collected through measurements of pest counts, 

leaf area index and defoliation values.  

 

Materials and Methods 

(a) Study site 

The data was derived from a study done at the University of 

Natural Resources and Environment (UNRE) in East New 

Britain, Papua New Guinea (PNG). PNG UNRE is an 

Agricultural and Environmental institution that focuses its 

academic programs on natural resource management. The 

campus is situated relatively at 4o21’01.90” S and 152o 54 

00’33.44” E with an elevation of 51 meters above sea level at 
[14]. The soil has been categorized as more calcareous in 

nature and relatively sandy loamy with high alkalinity [15]. It 

has a tropical climate that experiences a great deal of rainfall 

all year round, even in the driest month. 

 

(b) Nursery 

Before the study, a nursery was established via seed sowing in 

a nursery house. We used the cabbage variety, K-K cross 

(Oleracea var. capitata), as the host plant since it is popular 

in the tropical regions, proven to be heat tolerant and has 

quick maturity (58 days after transplant). The seedling phase 

lasted for three (3) weeks in the nursery house. To ensure 

viability and robust growth, seedlings were kept for 3 weeks 

until plantlets had acclimatized to the local environmental 

conditions before transplanting.  

 

(c) Sampling and data collection 

Three response variables were measured to calculate the 

impact of cabbage flea beetle under three treatments; 

T1=lemon grass + cabbage, T2= marigold plant + cabbage, 

and T3= monocrop cabbage (control), with each treatment, 

replicated three times. The abundance of flea beetles was 

counted during each sampling time. Due to the mobility of the 

beetles, less disturbance was done to the foliar. Defoliation 

(%) as a response variable and leaf area index (LAI) were 

calculated using BioLeaf Foliar Analysis in an android phone 

where a sample of the leaf was placed against a white paper, a 

clear photo taken using the phone camera (13-megapixel), and 

then the app automated all scanning and the defoliation (%) 

and LAI were calculated. Sampling was done randomly at all 

growth stages of cabbage (i.e. seedling, crowning, harvesting) 

on 5 plants per treatment per week. Data was collected once 

per week for a total period of 5-weeks. So, in total, there were 

15 data (5 plants x 3 measured variables) collected per 

treatment per replicate. Multiplying that by 3 treatments and 3 

replicates each (15x3x3) produced 135 data points per 

sampling per week. Therefore the grand total of collected data 

for 5 weeks was 675 (5x135) data points. 

 

(d) Data analysis 

The first objective of this study was to match the three 

distribution families to fit the data. We used the full model, 

γ~x1+x2+x3, where the response variable (y) is a function of 

sets of independent variables (x). Here, y represents 

defoliation (%), and it depends on abundance (x1), LAI (x2) 

and treatments (x3). In GLM, we can model the relationship 

between predictor X and response Y as  
where µ = E(Y; θ; φ) = b’(θ) and g is referred to as the link 

function [16]. The three important properties of a generalized 

linear model are the error structure, the linear predictor and 

the link function. The Gaussian, Poisson and Gamma 

distributions were investigated for these properties and fitted 

to the pest data. Although all computations were done in 

RStudio (version 4.0.3), only the simplified formulas are 

shown as follows for the sake of clarity. 

 

(i). Linear model: , where  is the 

dependent variable,  is the y-intercept,  is the slope 

coefficient,  is the independent variable and  is the 

random error term [17].  

 

(ii). Poisson model: 

, where y is 

the response variable, α and β are numeric coefficients, α 

being the intercept, x is the predictor/explanatory variable, 

is the i-th coefficient and  is the i-th predictor variable 
[18].  

 

(iii). Gamma model: , where g is the 

link function,  is the vector of mean 

regression parameters, xi is the i-th vector value of the 

explanatory variables, and ηi is a linear predictor [19]. 

 

In R, the error structure is defined by means of the family 

directive, used as part of the model formula. Examples are 

glm(y ~ z, family = Gaussian) which means that the response 

variable y has normal errors, glm(y ~ z, family = Poisson) 

means that the response variable y has Poisson errors, and 

glm(y ~ z, family = Gamma) means that the response has 

Gamma errors. The explanatory variable z can be continuous, 

leading to a regression analysis or categorical, leading to an 

ANOVA-like procedure called analysis of deviance [20]. 

For measuring the Goodness of Fit of a GLM, an Analysis of 

Deviance involving the residual deviance was used. The 

deviance formula for normal linear is )2, for Poisson 

it is )-(  and for Gamma it is 

 where  is observed data,  

the mean value of y, and  are the fitted values of  from the 

maximum likelihood model [20]. The Akaike information 

criterion (AIC) was used to estimate the quality of the three 

GLM models. The general formula for AIC is AIC = 

2*ln(likelihood) + 2*k where ln is the natural logarithm, k is 

the number of parameters in the statistical model and RSS is 

the residual sums of squares [21]. Bayesian information 

criterion (BIC) also compares different GLMs and is often 

used alongside AIC. The BIC statistic calculated for logistic 

regression is, BIC = -2 * LL + log(N) * k, where log() has the 

base-e called the natural logarithm, LL is the log-likelihood of 

the model, N is the number of examples in the training 

dataset, and k is the number of parameters in the model [12].  

 

Results 

The model comparisons were based on the dataset of cabbage 

flea beetle (Psylliodes chrysocephala L.). Three response 
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variables measured were defoliation (%), abundance and leaf 

area index (LAI). These variables were tested under three 

treatments: T1=lemon grass + cabbage, T2= marigold plant + 

cabbage, and T3= monocrop cabbage (control) with each 

treatment replicated three times. A total of 675 plants were 

sampled during the study, with 654 data points for P. 

chrysocephala. abundance, 1238.09 for defoliation (%) and 

749.51 for leaf area index (LAI).  

The data pertaining to the three variables were not normally 

distributed according to the Shapiro-Wilk test (p< 0.05). To 

correct the skewness in data distribution, we used Generalized 

Linear Model (GLM). The data were log transformed and 

analysed using the exponential family link function in 

RStudio (version 4.0.3). The aim was to find out the 

relationship between the values of the response variable (as 

measured in the data and predicted by the model in fitted 

values) and the linear predictor. The link function relates the 

mean value of y to its linear predictor. We used link functions 

(e.g. log link) and transformed the response variables (i.e. log 

(y) as the response variable rather than y). The following 

default canonical link functions were used for each GLM 

Family: Linear (link=identity), Poisson model (link=log) and 

Gamma (link=reciprocal) (table 1). The fitted values produced 

by each family were bit able to match the values of the data 

perfectly.  

 
Table 1: The statistics of the three generalized linear models (GLM) were computed using the residual deviance, AIC, BIC, dispersion 

parameter (ϕ) and p-value. 
 

 
 

Deviance (G2) was used as Goodness of Fit (GOF) and as a 

measure of discrepancy to assess the GOF in the GLM 

families. Akaike Information Criterion (AIC) was used to 

compare the three GLM models and determine which one was 

the best fit for the data. In addition, the Bayesian Information 

Criterion (BIC) was also used as it is closely related to AIC 

however the penalty term is larger in BIC than in AIC. 

Gamma GLM had lower AIC (697.78) and BIC (714.02) 

when compared to Poisson GLM and Gaussian GLM (Table 

1). Poisson model had infinite values for both AIC and BIC, 

which were considered higher than Gamma. The dispersion 

parameter (ϕ=0.26) of Gamma was much lower than the other 

two GLM models. Gamma also had the lowest residual 

deviance (66.72) which was deemed as a good fit for the data. 

The linear model had the highest residual deviance (694.03) 

followed by the Poisson model (87.71) therefore both were 

not considered as a good fit. The p-values were deduced by 

comparing the GLM models with a null model.  

According to the Analysis of Deviance table (Table 2), three 

sub-models from the three GLM models were analysed. Each 

of the three GLM models was reduced by omitting a x-

variable and then comparing it with a full and null model. The 

reduced and null models were derived from the full GLM 

formular, , where =Abundance, 

=LAI, =Treatment and y=Defoliation. The reduced 

model had only two -variables; abundance and LAI, while 

treatment was omitted. The null model did not have any x-

variable but only the response variable (y) (Table 2). The null 

Linear (gaussian) model ( ) had the highest residual 

deviance (RD) (1610.18) therefore it was not a good fit. The 

reduced linear model, , had a residual deviance 

of 712.55 (p< 0.05*). The full linear model, 

, had the lowest deviance (694.03, p< 

0.001***) therefore we considered it as a better linear model.  

The null Poisson model ( ) had the highest residual 

deviance (389.77) therefore, it was not a good fit. The 

reduced Poisson model, , had a residual 

deviance of 90.09 (p> 0.05). The full Poisson model, 

, had the lowest deviance (87.71, p< 

0.001***) therefore we considered it as a better Poisson 

model. The null Gamma model (y~1) had the highest residual 

deviance (142.25) therefore it was not a Goodness of Fit 

(GOF). The reduced Gamma model, , had a 

residual deviance of 66.73 (p> 0.05). The full Gamma model, 

, was slightly lower than the reduced 

model (66.72, p< 0.001***) therefore, it was considered as a 

better model.  

The relationship between x (predicted values) and y 

(residuals) of the Linear GLM is non-linear (Fig 1). The fitted 

red line is not close to the dash line and residuals have many 

outliers. The red line is not linear but quadratic in nature 

therefore it violates the linear distribution pattern. The 

Normal Q-Q plot of the linear model ( ) shows that the 

dependent variable is not normally distributed (Fig. 1). A few 

http://www.entomoljournal.com/


Journal of Entomology and Zoology Studies http://www.entomoljournal.com 
 

~ 391 ~ 

outlier data points violated a normal distribution trend (lower 

and upper tail). Therefore we cannot accept Linear GLM as a 

good model. For the Poisson model, the red line is close to the 

dashed zero line except in the lower tail (Fig. 2). The red 

fitted line does not perfectly fits the residual data points as 

there are still distinct outliers. The similar trend is also visible 

in the Q-Q plot (Fig. 2) where both the tail and head have 

deviated from the theoretical quantile distribution line. 

Therefore we cannot conclude that Poisson GLM is a good 

model fit. The Gamma model has a better fit than the Linear 

and Poisson GLMs. The red line is much closer to the dashed 

line and fits well with the residuals (Fig. 1). The fitted red line 

is not linear or quadratic but a polynomial regression that 

often fits a nonlinear relationship between the values of x and 

the corresponding mean of y, denoted . The tail of 

the Q-Q plot lies approximately on the theoretical line with 

less head deviation. Therefore Gamma model is the better 

model to use than the other two GLMs.  

 
Table 2. This Analysis of Deviance table compares different GLM models. Each of the three generalized linear models (Gwas reduced by 

omitting a x-variable and hen comparing it with a full and null model. Model comparisons were computed using the residual df, residual 

deviance, DF, Deviance and p-value. 
 

 
 

 

 
 

Fig 1: The residuals vs fitted plot (left) represents the full Linear model (formula = Defoliation ~ Abundance + LAI + Treatment). The 

relationship between x (predicted values) and y (residuals) is non-linear with distinct outliers. The normal Q-Q plot (right) shows that points fall 

along the normality line in the middle of the graph, but curve off in the extremities. This usually mean the data have more extreme values than 

would be expected in a normal distribution. 
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Fig 2: The residuals vs fitted plot (left) represents the full Poisson model (formula = Defoliation ~ Abundance + LAI + Treatment). The 

relationship between x (predicted values) and y (residuals) is non-linear with visible outliers. The normal Q-Q plot (right) shows that points fall 

along the normality line in the middle of the graph, but curve off in the extreme head. The presence of extreme values violates a possibility of 

normal distribution. 

 

 

 
 

Fig 3: The residuals vs fitted plot (left) represents the full Gamma model (formula = Defoliation ~ Abundance + LAI + Treatment). The 

relationship between x (predicted values) and y (residuals) is non-linear, with some outliers. The normal Q-Q plot (right) shows that points fall 

along the normality line in the middle of the graph and curve off in the extreme tail. However the data lies close to the normality line at the 

extreme head making Gamma as a possible good fit. 

 

Discussion 
According to the residual deviance (Goodness of Fit) and AIC 

as an estimator of model quality, it was confirmed that 

Gamma GLM is the best fit for the data set on cabbage flea 

beetle (Psylliodes chrysocephala L.). Both the AIC and 

deviance were low in the Gamma model, while high values 

were noted for Poisson and Linear GLMs. The use of 

deviance as a measurement of Goodness of Fit for GLM 

models has been described extensively by other researchers [6, 

24, 42]. Akaike Information Criterion (AIC) is a common 

statistical criteria used in selecting a model of best fit and it 

has had a fundamental impact in evaluating problems relating 

to statistical models [25-27]. The AIC was also computed in 

conjunction with the Generalized Linear Model in a study by 

Iamba and Waiviro [15] to correct the skewness in data 

distribution. Both AIC and BIC are helpful in comparing 

different statistical models [12, 28]. Since the response variables 

were not normally distributed (Shapiro-Wilk test: p< 0.05), 

GLM was fitted to analyse the non-linearity of data 

distribution [14].  

The GLM differs from ordinary least squares (OLS), even 

with a normally distributed dependent variable and OLS with 

“manually transformed” data would lead to wrong parameter 

estimates [29]. The gamma is a two-parameter continuous 

distribution family over positive values [30]. The Gamma GLM 

is typically applied to models having right-skewed data [41]. 

According to Evans, Hastings [32] if Y is a random variable 

with shape parameter κ and scale parameter θ, then E(Y) = κθ 

≡ μ and V(μ) = κθ2 = μ2/κ. Our study confirms the findings 

of Cundill and Alexander [30] where the negative binomial and 

gamma distributions captured severe skewness in the data sets 

relating to parasitology and entomology. Gamma distribution 

provided a better and more robust alternative estimator than 

other standard alternatives [41]. On the other hand, the Poisson 

distribution is used to model the number or count of events 

occurring within a given time interval [30]. The Poisson model 

did not fit well with the data set, which is evident by its high-

scaled deviance (G2). The Poisson model fits count data well 

and has been used to analyze abundance data of insects, 

weeds, and diseases [1]. 

The study found that flea beetle (P. chrysocephala) 

abundance was significantly lower in lemon grass-cabbage 
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intercrop plots hence the leaf damathe ge while increase in 

leaf area was evident [14]. By nature, abundance is not 

normally distributed [33, 34] and is quantified by discrete 

variables therefore can be best described by the Poisson or 

negative binomial distributions [1]. It is noticeable that the 

choice of link function (transformation) can influence the 

statistical significance the and is the power of test. It also 

important to test whether the transformation has corrected the 

problem [35]. Nonparametric methods can be used as 

alternatives to parametric tests for analyses of abundance and 

incidence when the assumptions of ANOVA are violated [2, 3]. 

On the contrary, nonparametric approaches are less powerful 

than parametric methods since they are unable to analyse data 

from factorial designs and repeated measures [36-38]. GLMs 

provide a more robust analysis than parametric ANOVA and 

nonparameteric tests since they enable appropriate analyses of 

skewed frequency or binary data. Moreover, GLMs considers 

the properties of data from discrete distributions such as 

Poisson and negative binomial distribution (counts) and 

binomial distribution (proportions) [39, 40]. 

 

Conclusion  

The use of residual deviance as Goodness of Fit and AIC as 

an estimator of model quality are two important criterion of 

Generalized Linear Model (GLM). Most ecological as well as 

entomological and parasitological data are non-normal and 

thereby requires GLM with appropriate families and 

canonical links to analyse the non-linearity. From this study, 

Gamma model was found to be a better model to analyse the 

data on cabbage flea beetle (Psylliodes chrysocephala L.). We 

thereby recommend future studies to take into the 

consideration the direction of skewness [41].  
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