

E-ISSN: 2320-7078 P-ISSN: 2349-6800 www.entomoljournal.com

JEZS 2021; 9(1): 715-719 © 2021 JEZS Received: 22-11-2020 Accepted: 24-12-2020

NS Dalvi

Department of Agril. Entomology, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, India

VS Desai

Department of Agril. Entomology, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, India

AL Narangalkar

Department of Agril. Entomology, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, India

SK Mehendale

Department of Agril. Entomology, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, India

SA Chavan

Department of Agril. Entomology, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, India

JS Dhekale

Department of Agril. Entomology, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, India

Corresponding Author:

NS Dalvi Department of Agril. Entomology, College of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, India

Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com

Effect of weather parameters on incidence of yellow stem borer, *Scirpophaga incertulas* (Walker) in rice ecosystem

NS Dalvi, VS Desai, AL Narangalkar, SK Mehendale, SA Chavan and JS Dhekale

Abstract

The present experiment was conducted during *Kharif* season 2018-19 and 2019-2020 at Agronomy farm, Department of Agronomy, College of Agriculture, Dapoli to study the correlation between yellow stem borer incidence and weather parameters. Results revealed that morning relative humidity in S_1V_1 (r=0.723), S_1V_2 (r=0.636), S_1V_3 (r=0.880), S_1V_5 (r=0.674) and evening relative humidity in S_1V_3 (r=0.646), S_1V_5 (r=0.620) and S_1V_6 (r=0.626) was found to be positively significant. While, maximum temperature in S_1V_3 (r=-0.708), S_1V_4 (r=-0.704), S_1V_5 (r=-0.760), S_1V_6 (r=-0.786), S_1V_7 (r=-0.721), S_1V_8 (r=-0.721), S_1V_9 (r=-0.617) and bright sunshine hours S_1V_2 (r=-0.606) and S_1V_3 (r=-0.747) was found to be negatively significant. Remaining all of the weather parameters were found to be non-significant.

Keywords: yellow stem borer, weather parameters, Dapoli

Introduction

Rice is the seed of monocot plant *Oryza sativa* (Asian rice) or *Oryza glaberrima* (African rice) belongs to family Graminae is originated from China. It is a staple food for more than two billion people. Insect pests constitute the major yield limiting biotic stresses throughout the rice growing countries. About 300 species of insects have been reported to attack rice crop in India, out of which 20 have been found to be the major pests^[1].

Yellow rice stem borer, *Scirpophaga incertulas* (Walker) is a monophagous pest of paddy that belongs to order Lepidoptera and family *Pyralidae*. It is a key pest as it infests the plant right from seedling to maturity and it has worldwide distribution. Symptoms of this pest are characterized by "dead heart" in hill at vegetative stage and "white ear" in panicle at reproductive stage. The larva creates a hole, get inside, feed on inner content and pupate in silken cocoon inside the larval tunnel in the base of plant ^[9]. When infestation occurs at flowering stage, the ear head become chaffy ^[4]. In India yellow stem borer, *Scirpophaga incertulas* has assumed the number one status as national pest ^[7]. The extent of damage caused by the yellow stem borer in rice ranged from 3 to 95 per cent ^[3].

Climate change affects insect physiology, behaviour, and development as well as species distribution and abundance, evidenced by changes in the number of generations a year, increasing survival rates in winter, and the earlier appearance of some insects. Information about seasonal abundance and population build up trend is essential to ensure timely preparedness to tackle impending pest problems and prevent crop losses .In this regard, the present investigation was carried out with the following objectives of effect of weather parameters on yellow stem borer, *Scirpophaga incertulas* incidence on rice

Materials and Methods

The experiment was conducted to know correlation between yellow stem borer incidence and weather parameters. Data on weather parameters like, maximum temperature, minimum temperature, morning relative humidity, evening relative humidity, rainfall and sunshine hours for the years 2018-2019 and 2019-2020 were collected from meteorological laboratory, Department of Agronomy, Dr. B. S. Konkan Krishi Vidyapeeth, Dapoli.

Experiment Layout: The experiment was conducted during *Kharif* season 2018-2019 and 2019-2020 was laid out in split plot design with three replications. The main plot treatments

Journal of Entomology and Zoology Studies

were three sowing windows, *viz.*, S_1 -23rd Met. Week, S_2 - 24th Met. Week and S_3 -25th Met. Week. The sub plot treatments comprised nine varieties *viz.*, V_1 - Karjat-5, V_2 - Karjat-7, V_3 -Ratnagiri-24, V_4 - Karjat-2, V_5 - Palghar-1, V_6 - Karjat-3, V_7 - Swarna, V_8 - Sahyadri-4 and V_9 - Jaya. Thus there were 27 treatment combinations.

Location	:	Agronomy farm, Dr. B.S.K.K.V., Dapoli.
Season	:	Kharif 2018-2019 and 2019-2020
Crop	:	Rice
Treatment details	:	A] Main plot (Sowing time) $S_1 - 23^{rd}$ Meteorological week (4 th to 10 th June). $S_2 - 24^{th}$ Meteorological week (11 th to 17 th June) $S_3 - 25^{th}$ Meteorological week (18 th to 24 th June) B] Sub plot (Varieties): $V_1 - Karjat-5$ $V_2 - Karjat-7$ $V_3 - Ratnagiri-24$ $V_4 - Karjat-2$ $V_5 - Palghar-1$ $V_6 - Karjat-3$ $V_7 - Swarna$ $V_8 - Sahyadri-4$ $V_9 - Jaya$
Plot Size	:	Gross: 7.2 x 2.1 m
(Gross Plot)		Net plot: 6.8 x 1.8 m
Design	:	Split plot design
Number of replications	:	Three
Spacing	:	20 cm x 15 cm

Details of Experiments

Method of recording observations

Five hills per plot were selected randomly to record the observations on the incidence of yellow stem borer infesting rice. The total number of tillers per hill and infested tillers per hill were recorded from five randomly selected hills for stem borer. The per cent stem borer infestation was worked out by using formula given below;

Per cent infestation of stem borer = No. of dead hearts /white ear heads Total no. of tillers/panicles per hill X100

Results and Discussion *Kharif* 2018

The data on correlation between yellow stem borer infesting rice at different sowing time and different meteorological parameters during 2018-2019 presented in Table 1 revealed that, rainfall (r = 0.908) was found to be positively significant with yellow stem borer infestation in S₁ (23rd SMW, 4th to 10th June). Remaining all other weather parameters were found to be non-significant.

During 2018-2019 the data on correlation between yellow stem borer infesting rice at different varieties and different meteorological parameters presented in Table 1 revealed that, rainfall was found to be positively significant with yellow stem borer infestation in V₁ (r=0.662), V₂ (r=0.626), V₃ (r=0.730), V₄ (r=0.622), V₅ (r=0.745), V₆ (r=0.603) and V₉ (r=0.662). While, maximum temperature had found to be negatively significant in V₃ (r=-0.633) and V₅ (r=-0.608). Remaining all of the weather parameters were found to be non-significant. The correlation between yellow stem borer infesting rice during 2018-2019 on combine effect of different sowing time and varieties with different meteorological parameters presented in Table 1 revealed that rainfall in S_1V_1 (r=0.894), S_1V_2 (r=0.840), S_1V_3 (r=0.889), S_1V_4 (r=0.926), S_1V_5 (r=0.898), S_1V_6 (r=0.867), S_1V_7 (r=0.888), $S_1V_8(r=0.819), S_1V_9$ (r=0.885) S_2V_5 (r=0.661) and morning relative humidity in S_1V_6 (r=0.629), S_1V_7 (r=0.621) and S_1V_8 (r=0.611) were found to be positively significant. While, maximum temperature was found to be negatively significant in S₁V₁ (r=-0.605), S₁V₃ (r=-0.604), S₁V₄ (r=-0.631), S₁V₉ (r=-0.631) and S_2V_5 (r=-0.605). Remaining all of the weather parameters were found to be non-significant.

Kharif 2019-2020

The data on correlation between yellow stem borer infesting rice at different sowing time, varieties and combine effect of different sowing time and varieties and different meteorological parameters during 2019-2020 are presented in Table 2 revealed that, all the weather parameters were found to be non-significant.

Pooled Data

The data on correlation between yellow stem borer infesting rice at different sowing time and different meteorological parameters during 2018-2019 and 2019-2020 are presented in Table 3 revealed that, all the weather parameters were found to be non-significant.

During 2018-2019 and 2019-2020 the data on correlation between yellow stem borer infesting rice at different varieties and different meteorological parameters are presented in Table 3 revealed that, all the weather parameters were found to be non-significant.

The results of data during 2018-2019 and 2019-2020 are presented in Table 3 on correlation between the yellow stem borer infesting rice at combine effect of different sowing time and varieties with different meteorological parameters like morning relative humidity in S_1V_1 (r=0.723), S_1V_2 (r=0.636), S_1V_3 (r=0.880), S_1V_5 (r=0.674) and evening relative humidity in S_1V_3 (r=0.646), S_1V_5 (r=0.620) and S_1V_6 (r=0.626) was found to be positively significant. While, maximum temperature in S_1V_3 (r=-0.708), S_1V_4 (r=-0.704), S_1V_5 (r=-0.760), S_1V_6 (r=-0.786), S_1V_7 (r=-0.721), S_1V_8 (r=-0.721), S_1V_9 (r=-0.617) and bright sunshine hours S_1V_2 (r=-0.606) and S_1V_3 (r=-0.747) was found to be negatively significant. Remaining all of the weather parameters were found to be non-significant.

The present observations are more or less support the findings of Chattopadhyay and Samui^[2] who stated that drop in mean temperature in association with continuous rainfall was found to be the most congenial weather condition for the incidence of the yellow stem borer. Mishra et al. [5] reported that the relative humidity and rainfall had significant positive correlation in respect to white ear head. Sankpal [8] reported that the maximum temperature as well as bright sunshine hours had negative correlation with yellow stem borer incidence at pre-harvest, while minimum temperature, morning relative humidity, evening relative humidity and rainfall had positive correlation with yellow stem borer. Mondal and Chakraborty ^[6] revealed that temperature recorded significant negative correlation with the incidence of DH and WH. Sulagitti et al. ^[10] showed a positive significant correlation with evening and average humidity and a positive non-significant correlation with morning humidity and rainfall.

Table 1: Correlation between sowing time, varieties and interaction (sowing time and varieties) and weather parameters on per cent yellow stem borer infestation during Kharif 2018-2019

T	Weather Parameter						
Treatments	TMax	TMin	RH-I	RH-II	Rain	BSS	
		Main Pl	ot: Sowing Tin				
\mathbf{S}_1	-0.589	0.086	0.589	0.519	908**	-0.480	
S_2	-0.538	-0.371	0.017	0.371	0.561	-0.042	
S ₃	-0.442	-0.430	-0.186	0.257	0.222	0.124	
			lot:- Varieties				
V_1	-0.573	-0.243	0.224	0.428	0.662*	-0.160	
V_2	-0.575	-0.219	0.161	0.443	0.626*	-0.209	
V ₃	-0.633*	-0.134	0.288	0.501	0.730*	-0.289	
V_4	-0.571	-0.229	0.174	0.435	0.622*	-0.157	
V5	-0.608*	-0.159	0.293	0.484	0.745**	-0.273	
V_6	-0.535	-0.234	0.194	0.377	0.603*	-0.161	
V 7	-0.542	-0.311	0.107	0.366	0.561	-0.091	
V_8	-0.536	-0.233	0.192	0.377	-0.570	-0.138	
V 9	-0.561	-0.183	0.231	0.434	0.662*	-0.203	
		Interaction-	Main plot x Sul	b plot			
S_1V_1	-0.605*	0.068	0.571	0.529	0.894**	-0.472	
S_1V_2	-0.559	0.014	0.439	0.512	0.840**	-0.429	
S_1V_3	-0.604*	0.082	0.595	0.521	0.889**	-0.478	
S_1V_4	-0.631*	0.109	0.583	0.556	0.926**	-0.501	
S_1V_5	-0.551	0.086	0.584	0.491	0.898**	-0.462	
S_1V_6	-0.533	0.125	0.629*	0.465	0.867**	-0.469	
S_1V_7	-0.557	0.117	0.621*	0.486	0.888**	-0.478	
S_1V_8	-0.523	0.125	0.611*	0.453	0.819**	-0.460	
S1V9	-0.631*	0.127	0.536	0.564	0.885**	-0.495	
S_2V_1	-0.459	-0.370	0.113	0.295	0.566	0.012	
S_2V_2	-0.510	-0.406	-0.040	0.342	0.519	-0.015	
S_2V_3	-0.559	-0.295	0.048	0.400	0.593	-0.112	
S_2V_4	-0.485	-0.391	0.095	0.312	0.588	0.011	
S_2V_5	-0.605*	-0.237	0.143	0.461	0.661*	-0.193	
S_2V_6	-0.481	-0.363	0.009	0.320	0.482	-0.019	
S_2V_7	-0.467	-0.467	-0.127	0.288	0.421	0.0930	
S_2V_8	-0.484	-0.434	-0.083	0.321	0.433	0.078	
S_2V_9	-0.412	-0.400	-0.036	0.265	0.467	0.0237	
S_3V_1	-0.364	-0.528	-0.341	0.184	0.072	0.278	
S_3V_2	-0.548	-0.245	-0.032	0.400	0.328	-0.094	
S_3V_3	-0.594	-0.296	-0.116	0.446	0.330	-0.034	
S_3V_4	-0.326	-0.417	-0.281	0.192	0.055	0.192	
S ₃ V ₅	-0.471	-0.351	-0.041	0.307	0.329	0.0160	
S_3V_6	-0.371	-0.429	-0.199	0.165	0.172	0.143	
S ₃ V ₇	-0.306	-0.489	-0.283	0.103	0.070	0.234	
S_3V_8	-0.340	-0.443	-0.212	0.138	0.117	0.198	
S ₃ V ₉	-0.408	-0.456	-0.066	0.244	0.339	0.150	

Table 'r' value = 0.735 at 1% level of significance and Table 'r' value = 0.602 at 5% level of significance (N = 11 i.e. N-2 d.f.)

* Significant at 5% level of significance

**Significant at 1% level of significance

Table 2: Correlation between sowing time, varieties and interaction (sowing time and varieties) and weather parameters on per cent
yellow stem borer infestation during <i>Kharif</i> 2019-2020

Truesday	Weather Parameter					
Treatments	TMax	TMin	RH-I	RH-II	Rain	BSS
		Main Plot	: Sowing Tim	e		
S_1	-0.276	-0.408	0.258	0.072	0.124	-0.052
S_2	-0.364	-0.172	0.504	0.205	0.108	-0.173
S_3	-0.364	-0.172	0.504	0.205	0.108	-0.173
		Sub Plo	ot:- Varieties			
V1	-0.404	-0.133	0.402	0.219	0.066	-0.241
V_2	-0.471	-0.254	0.494	0.293	0.234	-0.267
V ₃	-0.456	-0.161	0.516	0.302	0.205	-0.274
V_4	-0.360	-0.287	0.440	0.193	0.149	-0.142
V 5	-0.215	-0.341	0.369	0.062	0.021	0.013
V_6	-0.279	-0.411	0.379	0.092	0.042	-0.036
V ₇	-0.241	-0.444	0.345	0.055	0.057	0.012

						•
V_8	-0.350	-0.239	0.469	0.190	0.138	-0.146
V9	-0.424	-0.163	0.524	0.263	0.270	-0.226
		Interaction- N	lain plot x Sub	plot		
S_1V_1	-0.372	-0.035	0.206	0.209	0.157	-0.271
S_1V_2	-0.343	-0.275	0.305	0.147	0.189	-0.156
S_1V_3	-0.415	-0.219	0.365	0.214	0.260	-0.237
S_1V_4	-0.368	-0.392	0.406	0.180	0.293	-0.126
S_1V_5	-0.045	-0.519	0.184	-0.125	0.004	0.227
S_1V_6	-0.142	-0.244	0.010	0.024	-0.047	-0.060
S1V7	-0.024	-0.535	0.150	-0.147	-0.034	0.244
S_1V_8	-0.198	-0.693	0.179	0.030	0.115	0.049
S1V9	-0.579	-0.055	0.470	0.389	0.424	-0.456
S_2V_1	-0.356	-0.184	0.485	0.198	0.078	-0.178
S_2V_2	-0.488	-0.254	0.575	0.317	0.251	-0.277
S ₂ V ₃	-0.325	0.079	0.469	0.250	0.011	-0.232
S_2V_4	-0.305	0.021	0.398	0.204	0.008	-0.199
S ₂ V ₅	-0.309	-0.162	0.440	0.185	0.010	-0.155
S_2V_6	-0.274	-0.328	0.440	0.079	0.118	-0.030
S ₂ V ₇	-0.363	-0.445	0.461	0.162	0.201	-0.102
S ₂ V ₈	-0.331	-0.049	0.502	0.179	0.117	-0.159
S ₂ V ₉	-0.132	-0.177	0.331	0.029	0.010	0.048
S_3V_1	-0.128	0.058	0.118	0.068	-0.251	-0.096
S_3V_2	-0.212	-0.011	0.250	0.216	-0.083	-0.164
S ₃ V ₃	-0.212	-0.124	0.287	0.196	-0.027	-0.114
S_3V_4	0.065	-0.393	0.049	-0.151	-0.254	0.237
S ₃ V ₅	-0.074	-0.158	0.253	0.041	-0.084	0.049
S ₃ V ₆	-0.173	-0.259	0.306	0.087	-0.064	-0.011
S ₃ V ₇	-0.067	-0.179	0.123	0.019	-0.219	0.033
S ₃ V ₈	-0.184	-0.065	0.294	0.141	-0.024	-0.085
S ₃ V ₉	-0.296	-0.060	0.440	0.218	0.107	-0.159

Table 'r' value = 0.735 at 1% level of significance and Table 'r' value = 0.602 at 5% level of significance (N = 11 i.e. N-2 d.f.) * Significant at 5% level of significance

**Significant at 1% level of significance

Table 3: Pooled correlation between sowing time, varieties and interaction (sowing time and varieties) and weather parameters on per cent yellow stem borer infestation during Kharif 2018-2019 and 2019-2020

The sector sector	Weather Parameter					
Treatments	T Max	T Min	RH-I	RH-II	Rain	BSS
		Main P	lot: Sowing Tin	ne		
S_1	-0.431	-0.141	0.549	0.304	0.079	-0.195
S_2	-0.456	-0.379	0.135	0.276	0.077	-0.019
S ₃	-0.381	-0.419	-0.008	0.213	0.097	0.038
		Sub l	Plot:- Varieties			
V_1	-0.511	-0.292	0.348	0.332	0.099	-0.121
V_2	-0.569	-0.258	0.410	0.398	0.257	-0.213
V_3	-0.571	-0.232	0.412	0.400	0.221	-0.217
V_4	-0.509	-0.356	0.321	0.333	0.213	-0.123
V_5	-0.426	-0.384	0.257	0.260	0.062	-0.021
V_6	-0.492	-0.306	0.299	0.309	0.073	-0.097
V ₇	-0.462	-0.386	0.261	0.278	0.106	-0.054
V_8	-0.446	-0.298	0.195	0.265	0.072	-0.068
V9	-0.508	-0.306	0.358	0.347	0.272	-0.158
	•	Interaction-	Main plot x Su	ıb plot	•	
S_1V_1	-0.598	0.302	0.723*	0.516	0.336	-0.557
S_1V_2	-0.546	0.306	0.636*	0.486	0.509	-0.606*
S_1V_3	-0.708*	0.455	0.880**	0.646*	0.523	-0.747**
S_1V_4	-0.705*	-0.013	0.526	0.565	0.333	-0.395
S_1V_5	-0.760*	0.010	0.674*	0.620*	0.444	-0.489
S_1V_6	-0.786*	0.015	0.539	0.626*	0.387	-0.466
S_1V_7	-0.721*	-0.093	0.413	0.543	0.341	-0.370
S_1V_8	-0.721*	-0.051	0.547	0.567	0.331	-0.392
S1V9	-0.617*	-0.110	0.510	0.470	0.349	-0.336
S_2V_1	-0.402	-0.438	0.132	0.227	-0.013	0.058
S_2V_2	-0.524	-0.356	0.235	0.344	0.168	-0.095
S_2V_3	-0.469	-0.317	0.102	0.293	0.068	-0.052
S_2V_4	-0.370	-0.405	0.004	0.179	-0.053	0.064
S_2V_5	-0.464	-0.404	0.152	0.276	0.072	-0.015

S_2V_6	-0.401	-0.378	0.118	0.230	0.060	0.010
S_2V_7	-0.483	-0.401	0.215	0.302	0.123	-0.044
S_2V_8	-0.398	-0.333	0.020	0.241	0.011	0.028
S_2V_9	-0.323	-0.412	0.072	0.181	0.080	0.066
S_3V_1	-0.339	-0.406	-0.095	0.174	-0.017	0.088
S_3V_2	-0.513	-0.302	0.168	0.355	0.222	-0.125
S_3V_3	-0.512	-0.357	0.120	0.366	0.203	-0.073
S_3V_4	-0.301	-0.532	-0.036	0.148	0.159	0.105
S_3V_5	-0.321	-0.433	-0.010	0.176	0.077	0.081
S_3V_6	-0.352	-0.429	-0.050	0.174	0.057	0.064
S_3V_7	-0.300	-0.419	-0.085	0.127	0.009	0.092
S_3V_8	-0.304	-0.344	-0.100	0.148	0.056	0.056
S ₃ V ₉	-0.356	-0.479	0.025	0.202	0.118	0.080

Table 'r' value = 0.735 at 1% level of significance and

Table 'r' value = 0. 602 at 5% level of significance (N = 11 i.e. N-2 d.f.)

* Significant at 5% level of significance

**Significant at 1% level of significance

Acknowledgment

The authors are grateful to the Head, Department of Agronomy, College of Agriculture, Dapoli for providing the necessary help required during the experiment.

References

- 1. Arora R, Dhaliwal GS. Agro-ecological changes and insect pest problems in Indian agriculture. Indian J Ecol 1996;23:109-122.
- 2. Chattopadhyay N, Samui RP. Weather based forewarning of (*Scirpophaga incertulas*) on rice. Mausam, 2003;54(3):695-705.
- 3. Ghose RLM, Ghatage MV, Subramaniam V. Rice in India. Revised edition Indian Council of Agricultural Research, New Delhi 1960, 477.
- Jadhao MF, Khurad AM. Environmental correlates of population build-up of major rice pests, *Scirpophaga incertulas* and *Cnaphalocrocis medinalis* in Vidarbha region of Maharashtra, India. Indian J Tropical Biodiversity 2010;18(2):163-175.
- 5. Mishra AK, Singh SPN, Parwez A. Incidence of yellow stem borer (*S. incertulas* Wlk.) in different cultivars of *boro* rice (*Oryza sativa* L.) at different crop stage. *Oryza*, 2005;42(4):329-332.
- 6. Mondal IH, Chakraborty K. Observation on the impact of environmental parameters on rice yellow stem borer *Scirpophaga incertulas* (Walker) and its natural enemies at Murshidabad, West Bengal, India. J Entomol and Zool Studies 2017;5(6):1656-1663.
- 7. Pasalu IC, Krishnaiah NV, Katti G, Varma NRG. IPM in rice. IPM Newsl 2002, 45-55.
- Sankpal ND. Seasonal occurrence and management of major insect pests of paddy (*Oryza sativa* L.) under middle Gujarat condition. M.Sc. Thesis submitted to Anand Agricultural University, Anand, Gujarat 2011, 46.
- Sarwar Muhammad. Management of rice stem borers (Lepidoptera: Pyralidae) through host plant resistance in early, medium and late plantings of rice (*Oryza sativa* L.). J. Cereals and Oil seeds 2012;3(1):10-14.
- Sulagitti A, Raghuraman M, Sai Reddy MS, Sathua SK. Seasonal variation in major insect pest incidence on rice and impact of various abiotic factors on their incidence under Varanasi conditions. J Entomol and Zool Studies 2017;5(3):1060-1063.