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Abstract 
Fish as a group, apart from its nutritional value from a biodiversity point of view, has the highest species 

diversity among all vertebrate taxa. Fishes exhibit enormous diversity in size, shape, biology and in the 

habitats they occupy. Fishes form a highly successful group of animals comprising more than 30,700 

species inhabiting all seas, rivers, lakes, canals, dams, brackish water, estuaries and all places wherever is 

water. Major carp species contribute very significantly in total fish production of our country. Labeo 

rohita and and Cyprinus carpio var. communis are one of the most important culture species in 

aquaculture system and facing the problem of inbreeding in captive stocks and problem of 

overexploitation in wild stocks resulting reduction in level of heterozygosity and genetic diversity 

thereby it is important to analyze genetic structure of these species in order to devise and aid for their 

stock management and conservation. Unintentional inbreeding is a common default practice in 

hatcheries. A molecular marker is a site of heterozygosity for some type of silent DNA variation not 

associated with any measurable phenotypic variation. Such a “DNA locus,” when heterozygous, can be 

used in mapping analysis just as a conventional heterozygous allele pair can be used. Genetic variation in 

a species enhances the capability of organism to adapt to changing environment and is necessary for 

survival of the species. Various molecular provide different scientific observations which have 

importance in aquaculture practice recently such as: 1) Species Identification 2) Genetic variation and 

population structure study in natural populations 3) Comparison between wild and hatchery populations 

4) Assessment of demographic bottleneck in natural population 5) Propagation assisted rehabilitation 

programmes. 
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Introduction 

Almost 25% of global vertebrate diversity is accounted for by fish and India is the home for 

more than 11.72% of global fish biodiversity.Economically, fishes constitute a very important 

group of animals as a rich source of protein, liver oil and omega fatty acids. Fisheries sector 

plays a very important role in social and economic development by providing employment and 

nutritional security for the greater part of population of the country. Indian fisheries constitute 

about 5.17% of agriculture GDP and 0.9 % of the net GDP with total fish production of 10.79 

million metric tonnes of which of 3.58 million metric tonnes from marine fisheries and 7.21 

million metric tonnes from inland sector, out of which 6.489 million metric tonnes is from 

aquaculture(Ayyappan, et al., 2013) [7]. Owing to anthropogenic stresses, the fish availability 

from natural sources has been alarmingly declining world over and affecting sustainability of 

fisheries resources since their gene pools and genetic diversity is being eroded. Natural 

population of many fish species have experienced drastic reduction in number, largely due to 

the effects of overexploitation, habitat alterations including physiographic, abiotic and biotic 

features, escape of fish from fish farms and introduction of exotic species. This has adversely 

affected sustainability of many fisheries resources by eroding their gene pools and as a result 

genetic diversity. Genetic variation is an important feature of population both for short term 

fitness of individuals and long term survival of the population through allowing adaptation to 

changing environmental conditions (Ferguson et al., 1995) [29]. Determining the genetic 

structure is essential for developing controlled propagation, stock improvement and 

conservation plans. In terms of genetic management perspectives, the aim of natural fisheries 

management should be to conserve intra-specific genetic diversity for which description of the  
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genetic diversity of the concerned species is a pre-requisite 

for understanding the status and management requirements of 

the fish genetic resources. The genetic diversity of a species 

cannot be estimated from phenotypic data directly collected in 

the wild because of the possible occurrence of environmental 

effects which preclude accurate interpretation of observed 

variations. Now, genetic variations can be directly assessed 

through genetically controlled markers. Moreover, molecular 

genetic markers are powerful tools to detect genetic 

uniqueness of individuals, populations or species. These 

markers have revolutionized the analytical power necessary to 

explore the genetic diversity (Lakra et al., 2007) [42]. A 

molecular marker is a site of heterozygosity for some type of 

silent DNA variation not associated with any measurable 

phenotypic variation. Such a “DNA locus,” when 

heterozygous, can be used in mapping analysis just as a 

conventional heterozygous allele pair can be used. Several 

molecular tools have been used to assess genetic variation, 

determine population genetic structure and gene flow among 

fish species (Barroso et al., 2005) [12]. All organisms are 

subject to mutations because of normal cellular operations or 

interactions with the environment, leading to genetic variation 

(polymorphism). Genetic variation in a species enhances the 

capability of organism to adapt to changing environment and 

is necessary for survival of the species (Fisher, 1930) [32]. In 

conjunction with other evolutionary forces like selection and 

genetic drift, genetic variation arises between individuals 

leading to differentiation at the level of population, species 

and higher order taxonomic groups. Molecular genetic 

markers are powerful tools to detect genetic uniqueness of 

individuals, populations or species (Linda & Paul, 1995) [44]. 

These markers have revolutionized the analytical power, 

necessary to explore the genetic diversity (Hillis et al. 1996) 

[37]. Molecular markers can be classified into type I and type II 

markers. Type I markers are associated with genes of known 

function, while type II markers are associated with 

anonymous genomic regions (O’Brien, 1991) [57]. Under this 

classification, allozyme markers are type I markers because 

the protein they encode has known function. RAPD markers 

are type II markers because RAPD bands are amplified from 

anonymous genomic regions via the polymerase chain 

reaction (PCR). Microsatellite markers are also type II 

markers unless they are associated with genes of known 

function. In general, type II markers such as RAPDs, 

microsatellites, and AFLPs are considered non-coding and 

therefore selectively neutral. Such markers have found 

widespread use in population genetic studies to characterize 

genetic divergence within and among the populations or 

species (Brown and Epifanio, 2003) [13]. 

 

Protein markers 
Analysis of allozyme loci remained one of the most popular 

approaches in examining population genetics and stock 

structure questions in fishes (Suneetha, 2000) [79]. The 

technique is rapid, relatively inexpensive and provides an 

independent estimate of level of variation within a population 

without an extensive morphological and quantitative survey 

(Menezes et al. 1993) [57]. Amino acid differences in the 

polypeptide chain of the different allelic forms of an enzyme 

reflect changes in the underlying DNA sequence. Depending 

on the nature of the amino acid changes, the resulting protein 

products may migrate at different rates (due to charge and size 

differences) when run through a gel subjected to an electrical 

field. Differences in the relative frequencies of alleles are 

used to quantify genetic variation and distinguish among 

genetic units at the levels of populations, species, and higher 

taxonomic designations. Disadvantages associated with 

allozymes include occasional heterozygote deficiencies due to 

null (enzymatically inactive) alleles and sensitive to the 

amount as well as quality of tissue samples. In addition, some 

changes in DNA sequence are masked at the protein level, 

reducing the level of detectable variation. Some changes in 

nucleotide sequence do not change the encoded polypeptide 

(silent substitutions) and some polypeptide changes do not 

alter the mobility of the protein in an electrophoretic gel 

(synonymous substitutions). At present 75 isozyme systems 

representing several hundred genetic loci are known (Murphy 

et al. 1996) [53]. 

 

Mitochondrial DNA markers 

The development of DNA-based genetic markers has had a 

revolutionary impact on animal genetics. With DNA markers, 

it is theoretically possible to observe and exploit genetic 

variation in the entire genome. Popular genetic markers in the 

aquaculture community include allozymes, mitochondrial 

DNA, RFLP, RAPD, AFLP, microsatellite, SNP, and EST 

markers. The application of DNA markers has allowed rapid 

progress in aquaculture investigations of genetic variability 

and inbreeding, parentage assignments, species and strain 

identification, and the construction of high-resolution genetic 

linkage maps for aquaculture species. Well-designed studies 

using these genetic markers will undoubtedly accelerate 

identification of genes involved in quantitative trait loci 

(QTL) for marker-assisted selection. 

 

Restriction fragment length polymorphism (RFLP) 

RFLP markers (Botstein et al. 1980) [11] were regarded as the 

first shot in the genome revolution (Dodgson et al. 1997) [23], 

marking the start of an entirely different era in the biological 

sciences. Restriction endonucleases are bacterial enzymes that 

recognize specific 4, 5, 6, or 8 base pair (bp) nucleotide 

sequences and cut DNA wherever these sequences are 

encountered, so that changes in the DNA sequence due to 

deletions, base substitutions, or rearrangements involving the 

restriction sites can result in the gain, loss, or relocation of a 

restriction site. Digestion of DNA with restriction enzymes 

results in fragments whose number and size can vary among 

individuals, populations, and species. Most recent analyses 

replace the tedious Southern blot method with techniques 

based on the polymerase chain reaction (PCR). If flanking 

sequences are known for a locus, the segment containing the 

RFLP region is amplified via PCR. If the length 

polymorphism is caused by a relatively large (> approx. 100 

bp depending on the size of the undigested PCR product) 

deletion or insertion, gel electrophoresis of the PCR products 

should reveal the size difference. However, if the length 

polymorphism is caused by base substitution at a restriction 

site, PCR products must be digested with a restriction enzyme 

to reveal the RFLP.  

  

Random amplified polymorphic DNA (RAPD) markers 
RAPD markers are the amplified products of less functional 

part of the genome that do not strongly respond to selection 

on the phenotypic level. Such DNA regions may accumulate 

more nucleotide mutations with potential to assess inter-

population genetic differentiation (Mamuris et al. 2002) [49]. 

The amplification of genomic DNA by PCR with arbitrary 

nucleotide sequence primers, RAPD can detect high levels of 
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DNA polymorphisms (Williams et al., 1990) [91]. The 

technique detects coding as well as non-coding DNA 

sequences, and many of the most informative polymorphic 

sequences are those derived from repetitive (non-coding) 

DNA sequences in the genome (Haymer, 1994) [35]. Because 

90% of the vertebrate nuclear genome is non-coding, it is 

presumed that most of the amplified loci will be selectively 

neutral. RAPD loci are inherited as Mendelian markers in a 

dominant fashion and scored as present/absent. RAPDs have 

all the advantages of a PCR-based marker, with the added 

benefit that primers are commercially available and do not 

require prior knowledge of the target DNA sequence or 

genome organization. Other advantages of RAPDs include the 

ease with which a large number of loci and individuals can be 

screened simultaneously. Shortcomings of this type of marker 

include the difficulty of demonstrating Mendelian inheritance 

of the loci and the inability to distinguish between 

homozygotes and heterozygotes. Analysis follows the 

assumption that populations under study follow Hardy-

Weinberg expectations. In addition, the presence of 

paralogous PCR product (different DNA regions which have 

the same lengths and thus appear to be a single locus), low 

reproducibility due to the low annealing temperature used in 

the PCR amplification, have limited the application of this 

marker in fisheries science (Wirgin and Waldman, 1994)[92]. 

 

Single nucleotide polymorphism (SNP) 

Single nucleotide polymorphism (SNP) describes 

polymorphisms caused by point mutations that give rise to 

different alleles containing alternative bases at a given 

nucleotide position within a locus. SNPs are becoming a focal 

point in molecular marker development since they represent 

the most abundant polymorphism in any organism’s genome 

(coding and non-coding regions), adaptable to automation, 

and reveal hidden polymorphism not detected with other 

markers and methods (Liu and Cordes, 2004) [45]. 

Theoretically, a SNP within a locus can produce as many as 

two alleles, each containing one of two possible base pairs at 

the SNP site. Therefore, SNPs have been regarded as bi-

allelic. SNP markers are inherited as co-dominant markers. 

Several approaches have been used for SNP discovery 

including SSCP analysis [Hecker et al. 1999[36]), heteroduplex 

analysis, and direct DNA sequencing. DNA sequencing has 

been the most accurate and most used approach for SNP 

discovery.  

 

Microsatellite markers 

Microsatellites consist of multiple copies of tandemly 

arranged simple sequence repeats (SSRs) that range in size 

from 1 to 6 base pairs [e.g., ACA or GATA; Hecker, 1999) [36. 

Microsatellites tend to be evenly distributed in the genome on 

all chromosomes and all regions of the chromosome. 

However, data from whole genome sequencing has somewhat 

contradicted this statement. They have been found inside gene 

coding regions (Liu et al. 2001[45]), introns, and in the non-

gene sequences. Most microsatellite loci are relatively small, 

ranging from a few to a few hundred repeats. Regardless of 

specific mechanisms, changes in numbers of repeat units can 

result in a large number of alleles at each microsatellite locus 

in a population. Microsatellites have been inherited in a 

Mendelian fashion as codominant markers. Microsatellites 

were found to be informative in several species, which 

showed almost no variation at other markers (Taylor et al. 

1994) [83]. However, use of microsatellite markers involves a 

large amount of up-front investment and effort. Each 

microsatellite locus has to be identified and its flanking region 

sequenced to design of PCR primers. Due to polymerase 

slippage during replication, small size differences between 

alleles of a given microsatellite locus (as little as 2 bp in a 

locus comprised of di-nucleotide repeats) are possible. 

Microsatellites recently have become an extremely popular 

marker type in a wide variety of genetic investigations. 

 

Expressed sequence tags (ESTs) 

Expressed sequence tags (ESTs) are single-pass sequences 

generated from random sequencing of cDNA clones (Adam et 

al. 1991) [2]. The EST is use to identify genes and analyze 

their expression by means of expression profiling. It helps for 

rapid and valuable analysis of genes expressed in specific 

tissue types, under specific physiological conditions, or 

during specific developmental stages. ESTs offer the 

development of cDNA microarrays that allow analysis of 

differentially expressed genes to be determined in a 

systematic way (Wang et al. 1999) [86]. For genome mapping, 

ESTs are most useful for linkage mapping and physical 

mapping in animal genomics. In spite of its popularity in 

mammalian genome mapping (Korwin-Kossakowska, 2002 
[41] radiation hybrid panels are not yet available for any 

aquaculture species. Development of radiation hybrid panels 

from aquaculture species is not expected in the near future, 

given the fact that physical mapping using BAC libraries can 

provide even higher resolution and the fact that BAC libraries 

are already available from several aquaculture species. 

Therefore, ESTs are useful for mapping in aquaculture 

species only if polymorphic ESTs are identified (Liu, 1999) 

[46]. 

  

Application of molecular markers in species identification 

The inter-specific genetic divergence established through 

species specific diagnostic molecular markers provides 

precise knowledge on phylogenetic relationships Backer, 

2002[8]; Asensio et al. 2002 [6] and also resolve taxonomic 

ambiguities (Rocha-Olivares et al. 2000[70]; and Rasmussen et 

al. 2003) [67]. These markers can be used to detect hybrid and 

introgressed or backcrossed individuals, distinguish early life 

history stage of morphologically close species (Olivar et al. 

1999) [59] both in hatchery and in natural populations. Species-

specific allozyme markers have been identified in many fishes 

[Tilapia: 72; Sciaenid: 73; Anguilla sp: 79; Mugilidae: 80] 

Specific diagnostic allozyme loci were used for different 

species: apache trout (Oncorhynchus apache), cutthroat 

(Oncorhynchus clarki) and rainbow trout (Oncorhynchus 

mykiss) (Carmichael et al. 1993) [16] and Gambusia affinis and 

G. holbrooki (Wooten and Lydeard, 1990) [93]. Allozyme 

markers have also been used for individual classification in 

cyprinid species Zacco pachycephalus and Z. platypus 

(Wang-Hurng et al. 1997) [87], in cyprinodontid species V. 

letourneuxi and V. hispanica (Perdices et al. 1996) [64], in 

mullets Mullus barbatus and M. surmuletus (Mamuris et al. 

1998) [49] and hake species Merluccius australis and M. hubbsi 

(Roldán and Pla, 2001) [72]. Species-specific diagnostic RAPD 

fingerprints were generated in several fish species and their 

taxonomic relationship has been analyzed. RAPD markers 

were characterized to identify five species of family 

Cyprinidae: Chondrostoma lemmingii, Leuciscus pyrenaicus, 

Barbus bocagei, Barbus comizo, all endemic in the Iberian 

Peninsula and introduced Alburnus alburnus (Callejas and 

Ochando, 2002) [15], for studying genetic relationship and 
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diversities in four species of Indian Major carps (family 

Cyprinidae): rohu (Labeo rohita), kalbasu (L. calbasu), catla 

(Catla catla) and mrigal (Cirrhinus mrigala) (Barman et al. 

2003) [9].  

 

Genetic variation and population structure study in 

natural populations 

Geographic distance and physical barriers enhance 

reproductive isolation by limiting the migration and increase 

genetic differentiation between populations (Ryman, 2002) 

[73]. Impact of migration and gene flow on genetic 

differentiation also depends upon effective size of receiving 

population and number of migrants. Increased computational 

power and mathematical models have enhanced the scope of 

conclusions that can be drawn out of genotype data generated 

through molecular markers. Some of the possibilities are 

assignment of migrants (Piry et al. 2004) [65], determination of 

genetic bottlenecks (Luikart and Cornuet, 1998) [47], effective 

breeding population estimates (Luikart and Cornuet, 1999) 

[48]. Population genetic structure has been investigated using 

allozyme markers in many fish species, Oncorhynchus 

gorbuscha (Efremov, 2002) [27] and Tenualosa ilisha (Salini et 

al. 2004) [75]. Fifteen random primers were used to analyze the 

genome DNA of Jian carp (Cyprinus carpio var jian) by the 

RAPD technique (Dong et al. 2002)[24]. Study on cold tolerant 

traits for common carp Cyprinus carpio was conducted by 

Chang et al. (2003) [18] and nine RAPD-PCR markers 

associated with cold tolerance of common carp were 

identified. Population structure has been examined using 

microsatellite markers of sockeye salmon (Nelson et al. 2003) 

[54], Chinook salmon (Beacham et al. 2003) [10] and Arctic 

charr populations (Brunner et al. 1998) [14]. Genetic variation 

have been assessed using microsatellite genetic markers to 

identify the population structure of brook charr, Salvelinus 

fontinalis (Adams and Hutchings, 2003) [1] and 14 populations 

of northern pike (Esox lucius) in the North Central United 

States and in six populations from Quebec, Alaska, Siberia, 

and Finland (Senanan and Kapuscinski, 2000) [78]. Based on 

five microsatellite loci, the genetic structure of endangered 

fish species Anaecypris hispanica was studied in eight distinct 

populations in the Portuguese Guadiana drainage to determine 

levels of genetic variation within and among populations and 

suggested implications for conservation of the species 

(Salgueiro et al. 2003) [74]. Combination of allozyme and 

microsatellites was used to investigate genetic divergence in 

Salmo trutta (Palm et al. 2003) [61] and Salmo salar (Elliott 

and Reilly, 2003) [28]. Alarcon et al. (2004) [3] represents 

population genetic analysis of gilthead sea bream (Sparus 

aurata), Kanda and Allendorf (2001) [39] examine population 

genetic structure of bull trout Salvelinus confluentus using a 

combination of allozyme, microsatellite and mtDNA 

variation. 

 

Comparison of genetic variation between wild and 

hatchery populations 

Molecular markers also find application in aquaculture to 

assess loss of genetic variation in hatcheries through, 

comparison of variation estimates between hatchery stocks 

and wild counterparts. The information is useful obtained in 

monitoring farmed stocks against inbreeding loss and to plan 

genetic up gradation programmes. A major aspect such 

studies address is concerned with the assessment of farm 

escapes into the natural population and introgression of wild 

genome. All wild-unstocked samples were highly 

differentiated populations and significantly different from 

each other and from hatchery samples. Genetic diversity was 

investigated using microsatellites between farmed and wild 

populations of Atlantic salmon (Norris et al. 1999) [56]. 

Farmed salmon showed less genetic variability than natural 

source population in terms of allelic diversity. Variation in 

allozymes and three microsatellite loci was assessed in 

populations of wild and cultured stocks of Sparus aurata 

(Palma et al. 2004) [62] and Sparius auratus (Alarcon et al. 

2004) [3]. The microsatellite heterozygosity value were high in 

wild, but lower in the cultured samples.  

 

Application of microsatellites in population structure 

analysis in fisheries and aquaculture 
Highly polymorphic microsatellite markers have great 

potential utility as genetic tags for use in aquaculture and 

fisheries biology. They are powerful DNA markers for 

quantifying genetic variations within and between populations 

of species (Weber, 1990) [88]. The qualities of microsatellites 

make them very useful as genetic markers for studies of 

population differentiation and stock identification (Liu and 

Cordes, 2004) [45], in kinship and parentage exclusion 

(Webster and Reichart, 2005[89] and Hansen et al. 2001) [34] 

and in genome mapping (Sanetra et al. 2009) [77]. 

Microsatellites are also being used as genetic markers for 

identification of population structure, genome mapping, 

pedigree analysis, and to resolve taxonomic ambiguities in 

many other animals besides fishes (Nikbakht et al. 2013 [55]; 

Arias-P´erez et al. 2012 [5]; Fernandes et al. 2012 [31]; 

Upadhyay et al. 2012 [85]; Joshi et al. 2012 [38]; Xu and Liu 

2011 [94], Supungul et al. 2000) [80]. The broad areas of 

applications of microsatellite markers are depicted in the 

development of polymorphic microsatellite markers to 

determine the population structure of the Patagonian 

toothfish, Dissostichus eleginoides, has been reported by 

(Rogers et al. 2006) [71]. Similarly, Appleyard et al. (2002) [4] 

examined seven microsatellite loci in the same species of 

Patagonian toothfish from three locations in the Southern 

Ocean. Recently, Larsen et al. (2011) [43] showed differences 

in salinity tolerance and its gene expression in two 

populations of Atlantic cod (Gadus morhua). Drinan et al. 

(2011) [25] reported 20 microsatellites for determining the 

patterns of population genetic variation in westlope cutthroat 

trout, Oncorhynchus clarkia lewisii in 25 populations from 

four rivers. Davies et al. (2011) [20] identified 12 microsatellite 

loci in tuna species of genus Thunnus and investigated genetic 

polymorphism at these loci in North Atlantic and 

Mediterranean Sea populations. Similarly, several authors 

reported population genetic structure of different species of 

catfish; few of them are in the farmed catfish from 

Tamaulipas, Mexico (Perales-Flores et al. 2007) [63]; in 

neotropical catfish (Ribolli et al. 2012) [69]; in 

Pseudoplatystoma reticulatum (De Abreu et al. 2009) [21]. 

O’Connell et al. (1997) [58] reported the investigation of five 

highly variable microsatellite loci for population structure in 

Pacific herring, Clupea pallasi, collected from 6 sites in 

Kodiak Island. Similarly, many others have reported studies 

of polymorphic microsatellite loci to evaluate population 

structure of different fish species. Thus microsatellite markers 

have wide range of applications in population genetics and 

fisheries management. Salzburger et al. (2002) [76] reported a 

case of introgressive hybridization between an ancient and 

genetically distinct cichlid species in Lake Tanganyika that 

led to the recognition of a new species. DeWoody and Avise 
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(2000) [22] reported microsatellite variation in marine, fresh 

water, and anadromous fishes compared with other animals. 

Gopalakrishnan et al. (2009) [33] carried out characterization 

of dinucleotide microsatellite repeats in Labeo rohita. As 

these factors would lead to a reduction in reproductive fitness 

(Padhi and Mandal, 2000) [60], efforts to increase the genetic 

diversity of the fish species should be given high priority for 

conservation of the species, based on genetic principles as 

mentioned below. 

1. The effective population size (Ne) should be maintained 

as large as possible to maximize the contribution of a 

large number of adults for reproduction so as to maintain 

natural genetic variability. 

2. The causative factors that reduce the effective population 

size such as overexploitation should be controlled at the 

earliest. 

3. No artificial gene flow between distinct stocks should be 

created by means of haphazard stocking and 

rehabilitation programs. 

4. The rehabilitation strategy should also include means 

(screening the population, using genetic markers) to 

monitor impact of such program. 

5. The natural populations of the endangered species can be 

enhanced by “supportive breeding.” In this program, a 

fraction of the wild parents are bred in captivity and the 

progeny are released in natural waters. 

6. Brood stock of fish species collected from different rivers 

must be tagged and maintained in separate ponds in the 

holding facility. 

7. Effective breeding population size and sex ratio should 

not be restricted. To achieve this, collection of different 

size/year classes at different time intervals is to be 

preferred over the same size/year class. 

8. Use of cryopreserved milt, collected from different males 

and pooled, would be useful for increasing the effective 

population size and recovery of endangered populations 

of fish species. In comparison to the captive breeding 

program, the gene banking through sperm 

cryopreservation is relatively cheaper, easy to maintain, 

and less prone to risk due to system failure or mortality 

due to diseases. Therefore, it should serve as a useful 

adjunct to the captive breeding program. 

9. Different genetic stocks should be bred separately and 

ranched in the same rivers from where they are collected. 

10. Stretches of rivers harboring resident population or that 

can serve as a potential sanctuary, may be selected for 

ranching of fish populations. 

11. Assessing the impact of ranching through monitoring the 

parameters like catch per unit effort/area through 

experimental fishing should be done. 
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