

E-ISSN: 2320-7078 P-ISSN: 2349-6800 www.entomoljournal.com

JEZS 2020; 8(5): 964-968 © 2020 JEZS Received: 07-06-2020 Accepted: 05-08-2020

Mahesh Pathak

School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, (Central Agricultural University), Umiam, Meghalaya, India

RK Patidar

School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, (Central Agricultural University), Umiam, Meghalaya, India

RC Shakywar

College of Horticulture & Forestry (Central Agricultural University), Pasighat, East Siang, Arunachal Pradesh, India

Toge Riba

Krishi Vigyan Kendra, College of Horticulture & Forestry (Central Agricultural University), Pasighat, East Siang, Arunachal Pradesh, India

Mukesh Sehgal

National Centre for Integrated Pest Management, IARI Pusa, New Delhi, India

HR Shardana

National Centre for Integrated Pest Management, IARI Pusa, New Delhi, India

JP Singh

Division of Entomology, IARI Pusa, New Delhi, India

Corresponding Author: Mahesh Pathak School of Crop Protection,

College of Post Graduate Studies in Agricultural Sciences, (Central Agricultural University), Umiam, Meghalaya, India

Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com

Biodiversity of natural enemies in rice under Siang belt of Arunachal Pradesh

Mahesh Pathak, RK Patidar, RC Shakywar, Toge Riba, Mukesh Sehgal, HR Shardana and JP Singh

Abstract

Rice is the staple food crop and is grown extensively in North East Hill region of India. Insect-pests take a heavy toll of rice crop in Siang belt of Arunachal Pradesh resulting in losses in grain yields ranging from 10-51%. Insect specific predators and parasites used in biological control acts as natural biological control agents for these insect pests in the region. Keeping in view the above facts, roving field surveys were conducted in Kharif season of years 2015-2019 to identify natural enemy diversity (Predators and parasitoids) prevalent in rice in rainfed rice cropping system of five districts (East Siang, West Siang, Upper Siang, Lower Siang and Siang) of Arunachal Pradesh, falling under Siang belt of Arunachal Pradesh. The results revealed that as many as Twenty nine species of predators belonging to 20 genera under 15 families of 6 orders were recorded in traditional and improved rice growing belt under rainfed rice cropping system of Siang belt of Arunachal Pradesh. Damsel flies, Dragon flies, long horned grasshopper, Lynx spiders, Plant and leaf bugs and Wolf spiders were recorded in high numbers, whereas Ground beetles, Lady bird beetles, Long jawed spiders, Orb spiders, Ripple bugs and Sword bearing crickets were recorded in moderate numbers. Earwigs, Rove beetles and Sac spiders were recorded low in numbers. Among parasites, twenty six species (identified) and 4 unidentified species belonging to 18 genera under 10 families of Hymenoptera order were recorded. Genus Apanteles, Telenomus, Trichogramma and Xanthopimpla were recorded in high numbers, whereas Amuromorpha, Anagrus, Anastatus, Bracon, Cotesia, Stenobracon, Temelucha and Tetrastichus were recorded in moderate numbers. Genus Aphanogmus, Brachymeria, Elasmus, Gonatocerus, Isotima and Oligosita were recorded low in number.

Keywords: Rice, rainfed rice system, survey, insect pests, natural enemy diversity

1. Introduction

Rice (Oryza sativa L.) is the staple food of over half the world's population and is grown over about 167.13 million hectares. It is one of the most important cereal crops of the world and forms the staple food for more than 65 per cent of the world population and known as king of cereals. India is the largest rice growing country, while China is the largest producer of rice. In India, rice accounts for more than 40% of foodgrain production, providing direct employment to 70% people in rural areas (ICAR, 2011)^[11]. In Arunachal Pradesh rice is grown in valleys, terraces, uplands, hills and Jhum. The total area under rice cultivation is 130.505 thousand hectares with a total production of 328.845 thousand tones grain and a productivity of 25.20 q/ha (Anonymous, 2019)^[2]. One of the major reasons for the low production of rice is the pest problems associated with the crop. About 300 species of insects have been reported to attack rice crop in India, out of which 20 have been found to be the major pests (Arora and Dhaliwal, 1996)^[3]. These pests infest the crop at all stages of plant growth and cause a variety of damage such as tissue boring, sap sucking, defoliation and leaf scrapping (Sharma et al., 2004) ^[19]. In North East Hill (NEH) region the rice crop is host to many species of insect pests, few of them cause severe economic damage and records 20% yield losses to complete failure of the crop during epidemics. Yellow stem borer, leaf folder, case worm, hispa, gundhi bug, swarming caterpillar, thrips, gall midge and army worm are the important pests prevalent in the region (Shylesha et al., 2006)^[20]. During the last two decades, the wide adoption of highyielding varieties, increased use of agro chemicals and improved package of cultural practices in rice has considerably increased the pest problems Atwal and Dhaliwal, 2018)^[4]. Some of the pests considered as minor pests have gained status of major pests in recent years and the severe outbreak of some pests in certain localities causes heavy yield losses (Garg et al, 2004) [8]

The rainfed rice in the region is severely damaged by subterranean insects like root aphids and white grubs which are otherwise not a major problem of this crop in any other parts of India (Azad Thakur et al., 2012) [5]. Insect pests and diseases are the major production constraints in increasing productivity of rice in rainfed rice cropping system in Siang belt of Arunachal Pradesh (Pathak et al., 2013)^[14] and Riba et al., 2014) [17]. However, the rice fields of Arunachal Pradesh have seemingly rich community of natural enemies (Predators and parasitoids). These natural biological control agents are the friends of farmers and are responsible in managing the population build-up of rice insect pests. These natural enemies play a dominant role in suppressing pest population in the crop ecosystem, whenever favourable conditions prevail for their survival, development, conservation and multiplication. Furthermore, it is of paramount importance to have correct identification of natural enemies and understanding of their role in order to optimize the strategies for the management of insect pests (Way and Heong, 1994) ^[21]. Naturally occurring biological control has a potential role to play in the management of rice insect pests in Arunachal Pradesh and there is a need to emphasize the impact of indigenous natural enemies as an essential part of Integrated Pest Management (IPM) programmes (Ooi and Shephard, 2004)^[12]. Conservation of the natural enemy fauna in situ for suppressing the pest population seems to be a very good alternative, also information available on natural enemies of paddy insect pests from this area is meager.

Hence, in view of the importance of above facts, roving field surveys were conducted in *Kharif* seasons of year 2015-2019 to identify natural enemy (Predator and Parasitoid) diversity in rice crop in five districts of Arunachal Pradesh falling under Siang belt.

2. Materials and Methods

Collection of insect pests, natural enemies (predators and parasitoids) was done from paddy fields of five districts of Arunachal Pradesh viz. East Siang, West Siang, Upper Siang, Lower Siang and Siang falling under Siang belt of Arunachal Pradesh. Mostly the sampling was done by sweep net taking a 50 successive double stroke sweep during day time at 15 days interval starting from last week of July to 1st week of November at all the locations. Immature stages and damaged hills were also collected from different fields and reared in Biocontrol laboratory of Department of Plant Protection, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh for emergence of adults. Collected predators and parasites were killed immediately after capture with the help of potassium cyanide, ethyl acetate, carbon tetrachloride and chloroform. Collected specimens were kept temporarily in 70% alcohol and preserved in Outman's fluid. Specimens were also preserved using paper envelops, setting board (Spreading/Stretching board), relaxing container and pins for dragon and damsel flies. Pinning of dead flies was done through thorax into groove of setting board. Labeling was done according to date, collector and location. Specimens were kept in wooden boxes of dimension 45 x 30 x 15 cm. Repellants and preservatives like Naphthalene balls, para-dichloro-benze (PDB) crystals were used to repel other live insects from specimens. The collected specimens were identified up to species level from Zoological Survey of India, Kolkata, Department of Zoology, Aligarh Muslim University, Aligarh Department of Entomology, Indian Agricultural Research Institute (IARI),

New Delhi and National Centre for Integrated Pest Management, IARI, New Delhi. Based on the relative abundance of predators and parasites recorded in paddy fields they were classified into three main categories i.e. high, moderate and low (Garg *et al.*, 2002^[10]; Bhattacharyya *et al.*, 2006^[6] and Garg *et al.*, 2008)^[9].

3. Results and Discussion

During this study, the insect pests recorded attacking the rice crop at different developmental stages were leaf folder (Cnaphalocrosis medinalis), stem borer (Scirpophaga incertulas), white backed plant hopper [WBPH] (Sogatella furcifera), Leaf hoppers (Recilia dorsalis and Nephotettix virescens) and rice hispa (Dicladispa armigera). Incidence of leaf folder, stem borer and rice hispa were recorded at tillering stage and remained till the maturity of the crop, whereas, leaf hopper and WBPH were seen at flowering/milky stage (Table 1 and 2). Results of survey showed that 29 species of predators belonging to 20 genera under 15 families of 06 orders were recorded in traditional and improved rice growing region under Siang belt of Arunachal Pradesh. Damsel flies (Agriocnemis pygmaea and Ischnura senegalensis), Dragon flies (Crocothemis servilia and Orthetrum sabina), Long horned grasshopper (Conocephalus longipennis), Lynx spiders (Oxyopes javanus, O. lineatipes and O. assamensis), Plant and leaf bugs (Cyrtorhinus lividipennis) and Wolf spiders (Lycosa pseudoannulata) were recorded in high numbers, whereas Ground beetles (Ophionea nigrofasciata, Casnoidea ishii ishii and Casnoidea indica). Lady bird beetles (Harmonia octomaculata, Micraspis discolor and Micraspis inops), Long jawed spiders (Tetragnatha mandibulata, T. japonica, T. javana, T. virescens and T. maxillosa), Orb spiders (Argiope catenulate), Ripple bugs (Microvelia douglasi and Mesovelia vittigera) and Sword bearing crickets (Anaxipha longipennis and Metioche vittaticollis) were recorded in moderate numbers. Earwigs (Euborellia stali), Rove beetles (Paederus fuscipes) and Sac spiders (Clubiona japonicola and C. lena) were recorded low in numbers (Table 1).

Among parasites, 26 species (identified) and 4 unidentified species belonging to 18 genera under 10 families of Hymenoptera order were recorded. *Apanteles angustibasis*, *Telenomus dignus*, *T. remus*, *T. rowani* and *T. triptus*, *Trichogramma chilonis*, *T. japonicum*, *X. flavolineatta* and *Xanthopimpla punctata* were recorded in high numbers, whereas *Amuromorpha accepta*, *Anagrus optabilis*, *Anastatus* sp., *Bracon chinensis*, *Cotesia flavipes*, *Cotesia ruficrus*, *Stenobracon oculatus*, *philippinensis*, *Temelucha stangli*, *Tetrastichus formosanus* and *T. schoenobii* were recorded in moderate numbers. *Aphanogmus* sp., *Brachimeria*. sp., *Brachymeria excarinata*, *B. lasus*, *B. marmontii*, *Elasmus philippinensis*, *Gonatocerus* sp., *Isotima dammermani*, *Isotima javensis* and *Oligosita yasumatsuii* were recorded low in number (Table 2).

Garg *et al.* (2002) recorded 14 species of predators belonging to 13 genera under 13 families in rice fields in Baghpat district of Uttar Pradesh. It was evident that relative abundance of Ground beetle, Crickets, Grasshoppers, Plant bugs, Damsel flies and Wolf spiders was high, whereas Lady beetles and Long jawed spiders were recorded moderate in number. Water bugs, Earwigs, Lynx spiders, Dwarf spiders and Orb spiders were recorded low in number. Similarly, 08 species of Hymenopteran parasites belonging to 08 genera under 08 families were also recorded from rice fields. It was evident from the results that relative abundance of Xanthopimpla flavolineatta, Stenobracon nicevillei, Apanteles angustibasis and Apanteles flavipes were medium in number schonobii, Telenomus and **Tetrastichus** rowani. Capidosomopsis nacoleiae, and Trichogramma sp. were recorded low in number. The abundance and diversity of predator and parasites showed a gradual increase with the growth of rice plants and gradually decreased towards ripening of the crop. Bhattacharyya et al., 2006 ^[6] from Jorhat, Assam recorded 26 species of Predators with their target prev species, predatory stage, period of activity and relative abundance. They also reported 29 species of parasitoids belonging to 10 families of Hymenoptera viz., Braconidae, Ichneumonidae, Scelionidae, Trichogrammatidae, Bethylidae, Eulophidae, Chalcididae, Pteromelidae, Ceraphronidae and Vespidae. The present findings on predators and parasitoids of rice insect pests of Arunachal Pradesh corroborate the findings of Rahman (1983) ^[16], Anonymous (1992) ^[1] and Bhuyan and Basit (1995) ^[7] from Assam. Similar report was also made by Pathak *et al.* 2002 ^[13], Riba *et al.* 2013^[18] and Pathak *et al.* 2014 ^[15].

The study has revealed the presence of a wide array of natural enemies (predators and parasitoids) of rice insect pests, which may be of greater value in the biological control. Some natural enemies were found throughout the growing period, some were more during vegetative stage of the crop and reproductive stage of the crop. All the recorded predator and parasitoids are known to be directly related to their prey population. Therefore, greater emphasis is required for the conservation and augmentation of the rich natural enemy fauna in rice ecosystem of Arunachal Pradesh. However, the seasonal incidence, relative abundance of the pests/natural enemies and predators/parasitoids-prey relationship has to be worked out under different agro climatic zones to know the real impact of these naturally occurring biocontrol agents. It further suggests that important biological control agents can be exploited in the management of the major insect pests of rice.

Common Name	Scientific Name	Order	Family	Host	Period of activity	Relative abundance
Damsel flies	Agriocnemis pygmaea	Odonata	Agrionidae	Stem borer, Leaf folders and Planthoppers	Aug-Sept.	High
Damsel flies	Ischnura senegalensis	Odonata	Agrionidae	Stem borer, Leaf folders and Planthoppers	Aug-Sept.	High
Dragon flies	Crocothemis servilia	Odonata	Libullulidae	Stem borer, Leaf folders and Planthoppers	Aug-Sept.	High
Dragon flies	Orthetrum sabina	Odonata	Libullulidae	Stem borer, Leaf folders and Planthoppers	Aug-Sept.	High
Earwig	Euborellia stali	Dermaptera	Carcinophoridae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Low
Ground beetles	Ophionea nigrofasciata	Coleoptera	Carabidae	Leaf and Planthoppers, Leaf folders	Aug-Sept.	Moderate
Ground beetles	Casnoidea ishii ishii	Coleoptera	Carabidae	Leaf and Planthoppers, Leaf folders	July end-Sept	Moderate
Ground beetles	Casnoidea indica	Coleoptera	Carabidae	Leaf and Planthoppers, Leaf folders	July end- mid Oct	Moderate
Lady bird beetles	Harmonia octomaculata	Coleoptera	Coccinellidae	Leaf and Planthoppers, Leaf folders	Aug-Sept.	Moderate
Lady bird beetles	Micraspis discolor	Coleoptera	Coccinellidae	Leaf and Planthoppers, Leaf folders	Aug-Sept.	Moderate
Lady bird beetles	Micraspis inops	Coleoptera	Coccinellidae	Leaf and Planthoppers, Leaf folders	Aug-Sept.	Moderate
Long horned grasshopper	Conocephalus longipennis	Orthoptera	Tettigonidae	Leaf and Planthoppers, Leaf folders	July end- mid Oct	High
Long jawed spider	Tetragnatha mandibulata	Araneae	Tetragnathidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Moderate
Long jawed spider	T. japonica	Araneae	Tetragnathidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Moderate
Long jawed spider	T. javana	Araneae	Tetragnathidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Moderate
Long jawed spider	T. virescens	Araneae	Tetragnathidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Moderate
Long jawed spider	T. maxillosa	Araneae	Tetragnathidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Moderate
Lynx spider	Oxyopes javanus	Araneae	Oxyopidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	High
Lynx spider	O. lineatipes	Araneae	Oxyopidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	High
Lynx spider	O. assamensis	Araneae	Oxyopidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	High
Orb spider	Argiope catenulata	Araneae	Araneidae (Agriopidae)	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Moderate
Plant and leaf bugs	Cyrtorhinus lividipennis	Hemiptera	Miridae	Leaf and Planthoppers, Leaf folders	Aug-Sept.	High
Ripple bug	Microvelia douglasi	Hemiptera	Veliidae	Leaf and Planthoppers, Leaf folders	Aug-Sept.	Moderate
Ripple bug	Mesovelia vittigera	Hemiptera	Veliidae	Leaf and Planthoppers, Leaf folders	Aug-Sept.	Moderate
Rove beetles	Paederus fuscipes	Coleoptera	Staphylinidae	Stem borer, Leaf folder, Leaf and	July end- mid	Low

Table 1: Predators recorded/ collected in rice ecosystem during Survey of Siang belt of Arunachal Pradesh (Kharif 2015 to 2019).

				Planthoppers	Oct	
Sac spider	Clubiona japonicola	Araneae	eae Clubionidae Stem borer, Leaf folder, Leaf and July end- n Planthoppers Oct		July end- mid Oct	Low
Sac spider	C. lena	Araneae	Clubionidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	Low
Sword bearing crickets	Anaxipha longipennis	Orthoptera	Trigoniidae	Leaf and Planthoppers, Leaf folders	July end- mid Oct	Moderate
Sword bearing crickets	Metioche vittaticollis	Orthoptera	Trigoniidae	Leaf and Planthoppers, Stem borer, Leaf folders	July end- mid Oct	Moderate
Wolf spider	Lycosa pseudoannulata	Araneae	Lycosidae	Stem borer, Leaf folder, Leaf and Planthoppers	July end- mid Oct	High

Table 2: Parasites recorded /collected in rice ecosystem during Survey of Siang belt of Arunachal Pradesh (*Kharif* 2015 to 2019)

Parasitoid Order		Family	Host species	Host Stage Parasitized	Period of activity	Relative abundance
Amuromorpha accepta	Hymenoptera	Ichneumonidae	S. incertulas	Eggs, Larvae	July end-mid Oct.	Moderate
Anagrus optabilis	Hymenoptera	Mymaridae	S. furcifera	Nymph and adults	Augmid Oct.	Moderate
Anastatus sp.	Hymenoptera	Eupelmidae	Bugs and Grasshoppers	Eggs	Augmid Oct.	Moderate
Apanteles angustibasis	Hymenoptera	Braconidae	C. medinalis	Larvae	July end-mid Oct.	High
Aphanogmus sp.	Hymenoptera	Ceraphronidae	C. medinalis	Larvae, Pupae	Augmid Oct.	Low
Brachimeria. sp.	Hymenoptera	Chalcididae	C. medinalis	Egg, Larvae	Augmid Oct.	Low
Brachymeria excarinata	Hymenoptera	Chalcididae	C. medinalis	Eggs, Larvae	Augmid Oct.	Low
Brachymeria lasus	Hymenoptera	Chalcididae	C. medinalis	Egg, Larvae	Augmid Oct.	Low
Brachymeria marmonti	Hymenoptera	Chalcididae	Charops bicolar	Egg, Larvae	Augmid Oct.	Low
Bracon chinensis	Hymenoptera	Braconidae	S. incertulas	Larvae	SeptOct.	Moderate
Cotesia flavipes	Hymenoptera	Braconidae	S. incertulas	Larvae	SeptOct.	Moderate
Cotesia ruficrus	Hymenoptera	Braconidae	S. incertulas	Larvae	SeptOct.	Moderate
Elasmus philippinensis	Hymenoptera	Elasmidae	C. medinalis	Larvae	AugOct.	Low
Gonatocerus sp.	Hymenoptera	Mymaridae	S. incertulas	Larvae	Augmid Oct.	Low
Isotima dammermani	Hymenoptera	Ichneumonidae	S. incertulas	Eggs, Larvae	AugOct.	Low
Isotima javensis	Hymenoptera	Ichneumonidae	S. incertulas	Eggs, Larvae	AugOct.	Low
Oligosita yasumatsui	Hymenoptera	Trichogrammatidae	S. furcifera	Nymph and adults	Augmid Oct.	Low
Stenobracon oculatus	Hymenoptera	Braconidae	S. incertulas	Eggs, Larvae	Augmid Oct.	Moderate
Telenomus dingus	Hymenoptera	Scelionidae	S. incertulas	Eggs	Augmid Oct.	High
Telenomus remus	Hymenoptera	Scelionidae	S. incertulas	Eggs	Augmid Oct.	High
Telenomus rowani	Hymenoptera	Scelionidae	S. incertulas	Eggs	Augmid Oct.	High
Telenomus triptus	Hymenoptera	Scelionidae	S. incertulas	Eggs	Augmid Oct.	High
Temelucha philippinensis	Hymenoptera	Ichneumonidae	C. medinalis	Eggs, Larvae	Augmid Oct.	Moderate
Temelucha stangli	Hymenoptera	Ichneumonidae	C. medinalis	Eggs, Larvae	Augmid Oct.	Moderate
Tetrastichus formosanus	Hymenoptera	Eulophidae	S. incertulas	Eggs	Augmid Oct.	Moderate
	Hymenoptera	Eulophidae	S. incertulas	Eggs	Augmid Oct.	Moderate
			S. incertulas, C. medinalis		Augmid Oct.	High
Trichogramma japonicum	Hymenoptera				Augmid Oct.	High
Xanthopimpla flavolineatta			S. incertulas, C. medinalis		July end-mid Oct.	High
Xanthopimpla punctata	Hymenoptera	Ichneumonidae	C. medinalis	Eggs, Larvae	July end-mid Oct.	High

4. References

- 1. Anonymous. Annual Report. All India Coordinated research Project on Biological control of Crop Pests and Weeds, Jorhat. 1992, 148-150.
- 2. Anonymous. Department of Agriculture, Government of Arunachal Pradesh (http://www.agri.arunachal.gov.in/). 2019.
- Arora R, Dhaliwal GS. Agro-ecological changes and insect pest problems in Indian Agriculture. Indian J Ecology. 1996; 23:109-122.
- 4. Atwal AS, Dhaliwal GS. Agricultural Pests of South Asia and their Management. 6th Edition, Kalyani publishers, New Delhi. 2018, 678.
- Azad Thakur NS, Firake DM, Behre GT, Firake PD, Saikia K. Biodiversity of Agriculturally Important Insects in North Eastern Himalaya: A Review. Indian Journal of Hill Farming. 2012; 25(2):37-40.
- Bhattacharyya B, Basit A, Saikia DK. Parasitoids and predators of rice insect pests of Jorhat district of Assam. J Biol. Control. 2006; 20(1):37-44.

ecosystem. Journal of Biological Science Society of N.E. India. 1995; 2:69-70.

- Garg DK, Jeswani MD, Pathak Mahesh. IPM in Rice Eco-system. in Advances in Plant Protection Sciences (Prasad Dwarika and Singh Amerika, Eds.). Society of Plant Protection Sciences, Division of Nematology, IARI, New Delhi, India. 2004, 404-419
- Garg DK, Jeswani MD, Tanwar RK, Kanwar Vikas, Singh SP. Integrated Pest Management in Basmati Rice in India. *in* Rice Pest Management (Prakash Anand, Sasmal S, Rao Jagadiswari, Tewari SN, Behera KS, Singh SK and Nandagopal V, Eds.). Central Rice Research Institute (CRRI) & Applied Zoologists Research Association (AZARA), Cuttack, India. 2008, 295-310
- 10. Garg DK, Kumar Pradyumn, Singh RN, Pathak Mahesh. Role of Parasitoid *Trichogramma japonicum* in the Management of Yellow Stem Borer and Leaf Folder in Basmati Rice. Indian J Ent. 2002; 64(2):117-123.
- 11. ICAR. Handbook of Agriculture. 2011, 1617.
- 7. Bhuyan M, Basit A. Spider fauna under different rice
- 12. Ooi paa; Shephard BM. Predators and parasitoids of rice

insect pests. In Biology and Management of Rice Pests. Ed. Heinrichs, EA, Wiley Eastern Limited. 2004, 779.

- Pathak Mahesh, Garg DK, Jeswani MD, Singh RN. Farmers Participatory IPM in Basmati rice at Sarurpur- A Case Study. Ann. Pl. Protec. Sci. 2002; 10(2):386-388.
- 14. Pathak Mahesh, Shakywar RC, Sah Dinesh. Biodiversity of insect pests, natural enemies and diseases in SRI and traditional system of rice cultivation in North East Region of India. Oryza, 2013; 50(4):370-374.
- 15. Pathak, M, Riba Toge, Shakywar RC, Sah Dinesh, Mishra BP, Singh Premjit M. Rice Ecosystem and their Integrated Management. In "7th National Extension Education Congress-2014" translational Research-Extension for Sustainable Small Farm Development (November 08-11, 2014), held at ICAR Complex for NEH Region, Umiam, Meghalaya. 2014, 103.
- Rahman A. Ecological studies of rice leaf folder *Cnaphalocrosis medinalis* Guenee. Ph.D. thesis, Assam Agricultural University, Jorhat, India. 1983.
- 17. Riba Toge, Pathak Mahesh, Singh KM, Shakywar RC, Sah D, Singh Premjit M. Biodiversity of Rice Insect Pests, Natural Enemies and Diseases in Rainfed Rice Ecosystem of East Siang District, Arunachal Pradesh. In Extended Abstracts of National Symposium on Entomology as a Science and IPM as a Technology- the Way Forward (13-15th November, 2014), held at College of Horticulture & Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh. 2014, 117-118.
- 18. Riba, T, Pathak M, Shakywar RC. Pattern of Diseases, Insect pests and Natural enemies in Rice Ecosystem of East Siang, Arunachal Pradesh. *In* National Symposium on Crop pathosystem interactions under aberrant weather and perspectives for crop health management & Twenty Sixth annual general meeting of Indian Pathological Society (Eastern Zone), held at Central Rainfed Upland Rice research Station (CRRI, ICAR), Hazaribag, Jharkhand on 24-25th October 2013. 2013, 20-21.
- Sharma MK, Pandey V, Singh RS, Singh RA. A study on light trap catches of some rice pests in relation to meteriological factors. Ethiopian Journal of Science. 2004; 27(2):165-170.
- Shylesha AN, Azad Thakur NS, Pathak KA, Rao KR, Saikia K, Surose S *et al.* Integrated management of insect pest of crops in north eastern hill region. Technical Bulletin No. 19, ICAR RC for NEH region, Umiam. 2006, 50.
- 21. Way MJ, Heong KL. The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice-A review. Bulletin of Entomological Research. 1994; 86:567-587.