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Abstract 
Owing to their functions in the prevention of chronic diseases and the use of preservatives in food and 

cosmetics, antioxidant agents have gained much interest in recent years. Vtg and its related Pv also bear 

antioxidant anti-ROS activities. These proteins, being components of our food source, are therefore 

natural antioxidants. They can be an important antioxidant with potential for food and cosmetics 

preservation as well as for the stabilisation of chronic disease states. Vitellogenin (Vtg), the main 

precursor protein of egg yolk, is historically thought to provide protein- and lipid-rich nutrients to grow. 

However, Vtg 's roles extend beyond nutritional functions, as well as its related yolk proteins lipovitellin 

(Lv) and phosvitin (Pv). Accumulating evidence has shown that Vtg, Lv, and Pv engage with 

multifaceted roles in host innate immune response. They all can serve as multivalent receptors for pattern 

recognition capable of recognising invading microbes. Even Vtg and Pv can serve as immune Protection 

with multifaceted capabilities. They all can serve as multivalent receptors for pattern recognition capable 

of recognising invading microbes. Also, Vtg and Pv can serve as immune effectors which can destroy 

bacteria and viruses. In addition, Vtg and Lv as opsonins are shown to possess phagocytosis-promoting 

activity. Besides these immune-relevant functions, Vtg and Pv have antioxidant activity which can 

protect the host against oxidant stress. These non-nutritional functions clearly expand our understanding 

of the molecules' physiological roles, thus providing a solid foundation for the future application of the 

molecules in human health. 
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1. Introduction 
Most fish are oviparous, with outward fertilising of their eggs [1]. The final result of oocyte 

growth and differentiation is the eggs or haploid reproductive cells, which develop into viable 

embryos after fertilization [2]. In general, the development of oocytes includes several steps: 

the creation of primordial germ cells (PGCs) and the transformation of PGCs into oogonia, and 

then into oocytes. Thereafter, during vitellogenesis, significant maternal information and 

molecules required for early embryo development are deposited in growing oocytes, including 

RNAs, proteins, lipids, vitamins, and hormones [2, 3]. One of the most significant proteins 

stored in oocytes is vitellogenin (Vtg), a superfamily member of the broad lipid transfer 

protein (LLTP) [3, 4, 5]. Vtg is a high molecular mass glycolipophosphoprotein, which typically 

circulates as a homodimer in the blood (vertebrates)/hemolymph (invertebrates) [4, 6, 7, 8]. In a 

given species, there are normally many Vtg isoforms, which are encoded by a multigene 

family [9, 10]. In chicken Gallus gallus [11, 12], four in Africa frog Xenopus laevis [13, 14] and six in 

nematode Caenorhabditis elegans [15], for example, three Vtg genes have been identified. In 

teleosts even multiple vtg genes are common. In zebrafish Danio rerio [16, 17], two vtg genes in 

carp Cyprinus carpio [18], four vtg genes in medaka Oryzias latipes [10], three vtg genes in 

striped bass Morone saxatilis [19], and three vtg genes in white perch Morone americana [20] are 

identified. Almost all vellogenins (Vtgs) processed by genetic factors get a similar approach in 

vertebrate species, like fish and invertebrates, particularly insects [21, 22]. In certain 

circumstances, Vtg comprised of 3 preserved regions, LPD N (as well recognized as 

vitellogenin N or LLT domain), located just at N-terminus, the unknown function domain 

(DUF) 1943, as well as the von Willebrand factor type D domain (vWD), situated only at C-

terminus and spread through a broad range of proteins [21]. Or sometimes, in some Vtg proteins 

in vertebrates like fish and chicken, the undefined role domain called DUF1944 is believed to 

undergo among DUF1943 and vWD.  
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Beginning just at N-terminus, the complete Vtg fish 

comprises of a polypeptide chain, a lipovitellin heavy chain 

(LvH), a phosphorylated serine rich phosvitin (Pv), a 

lipovitellin light chain (LvL) as well as a β-component (β-C) 

plus a vWD-coded C-terminal region (CT) [4, 19, 20, 23].  

In particular, some teleostean Vtgs lack Pv and most of the 

carboxyl-terminus (β-component and C-terminal peptide), 

consisting only of LvH and LvL [23]. Also, Pv is absent in 

most Vtg invertebrates [8, 16]. In the females of nearly all 

oviparous animals, including fish, amphibians, reptiles, birds, 

most invertebrates and platypus, Vtgs, the precursors of egg 

yolk proteins, exist. Vtgs are normally synthesised in extra-

ovarian tissue (in vertebrate liver, crustacean hepatopancreas 

and fat body of insects) and transported through the 

circulation system to the ovary where they are internalised 

into rising oocytes through receptor-mediated endocytosis 

during vitellogenesis with diverse proportional composition [2, 

7, 19, 24, 25, 26, 28, 29, 30, 31]. Interestingly, the concentrations of 

various Vtgs internalised by increasing oocytes are not always 

equal to the concentrations of circulating Vtgs in the blood, 

which may be due to the control of the system of multiple 

ovarian receptors engaged in different Vtg endocytosis [32, 33, 

34, 35]. When internalised in the oocytes, the aspartic protease 

cathepsin D cleaves Vtgs proteolytically to create yolk 

proteins, such as Lv subunits, Pv and β-C [36, 37, 38, 39, 40, 41, 42, 43]. 

Lv subunits and Pv are contained in yolk globules or platelets 

while β-C remains a soluble fraction in cytoplasm [44, 45, 46]. 

Lv, the largest yolk protein derived from Vtgs proteolytic 

processing, is an apoprotein that mainly delivers 

phospholipids into oocyte growth [36, 47]. Pv, the smallest yolk 

protein, consists primarily of phosphorylated serine residues 

expected to stabilise nascent Vtg structure during lipid 

loading and improve blood solubility of Vtg [4, 47]. β-C and 

CT, small vWD cleavage products with a highly conserved 

pattern of repeated cysteine residues, are intended to stabilise 

Vtg dimer for cell recognition and receptor binding and to 

protect Vtg or its component yolk proteins against premature 

or inappropriate proteolysis [4, 19, 20]. All these yolk proteins 

are later used as nutrients in the development of embryos to 

feed their cells [48, 49]. 

Vtgs were once regarded as a female-specific protein [50, 51]; 

however, synthesis has been shown, although in smaller 

amounts, to occur in male and even sexually immature 

animals [52, 53, 54], indicating that Vtgs presumably serve a 

more general function independent of the sex. Recently, it has 

been shown that both Vtgs and yolk proteins are related to the 

immune response and antioxidant activity in fish, questioning 

the conventional view that Vtgs and yolk proteins are a basic 

source of nutrients for developing embryos. The immune-

relevant and antioxidant activities of Vtgs and yolk proteins in 

fish are listed below. 

 

2. Immune Roles of Vtgs 

Gathering data revealed many non-nutritional functions for 

Vtg. In the honeybee Apis mellifera, an advanced eusocial 

insect [55, 56, 57, 58], for example, Vtgs were shown to be 

correlated with social organisation, temporal division of 

labour and foraging specialisation, control of hormonal 

dynamics and change in gustatory responsiveness. Recent 

studies show that Vtgs also perform roles important to the 

immune system. Zhang et al. observed that Vtg purified from 

the ovaries of the protochordate amphioxus (Branchiostoma 

japonicum) exhibited hemagglutinating activity against chick, 

toad and grass carp erythrocytes as well as antibacterial 

activity against the Gram-negative bacterium E Coli. The first 

solid evidence showing that Vtg preforms an immune-

relevant function [59]. Eventually afterwards, this was 

observed which Vtg distilled from of the Puntius conchonius 

rosy barb could inhibit the growth of the Gram-negative 

bacteria E. Coli, E. Aerogenes and Pseudomonas putida and 

Gram-positive bacteria Staphylococcus aureus, Bacillus 

subtilis and Streptococcus pyogenes [60] and the carp Vtg that 

can inhibit its development of E. Coli and S. aureus in a dose-

dependent manner [61]. Interestingly, protostomal Vtgs also 

tend to exhibit antibacterial activity. It has recently been 

shown that Vtg from the scallop (Patinopecten yessoensis) 

has an antibacterial activity against Gram-positive and Gram-

negative bacteria [62]. In addition, Vtg is in nematode C. 

elegans also tends to be active in its antimicrobial safety. 

Decreased survival was found in Vtg-knockdown C. elegans 

following infection with the pathogen [63]. A further 

justification for all of this an invertebrate Vtg function linked 

to tolerance to bacteria have been produced by enhancing 

nematode resistance to the pathogen Photorhabdus 

luminescens, when oestrogen 17 β-estradiol and 

phytoestrogen daidzein stimulated the development of Vtg. 

Reduction of Vtg caused by soy isoflavone genistein, 

however, decreased the host resistance to P. luminescens [64]. 

Brought along, the antibacterial activity it seems to be a 

universal property of both vertebrate and invertebrate Vtgs. 

Vtg is historically assumed to even provide protein and lipid-

rich components for both the growth of embryonic and 

worms. Even so, that accumulation of data shows that this 

position goes even beyond nutritional purpose. In developed 

eusocial pollinator species, have shown that the Vtgs is 

correlated to social organisation, temporary division of labour 

and specialisation in foraging, control of hormonal processes 

and alteration of taste sensitivity. Latest experiments have 

shown that Vtgs also perform immune-relevant functions. Vtg 

is able to identify infectious pathogens as just a multivalent 

information processing receptor that destroys bacterial or 

neutralises the virus as an effector molecule and stimulates 

phagocytosis as opsonine. In addition, Vtg also shows 

behaviours for hemagglutinate erythrocytes and aggregate 

pathogens. In relation with immune functions, Vtg performs a 

new function as just an antioxidants. Shi et al., showed that 

intraperitoneal injection of E. coli was able to enhance the 

level of serum Vtg in male P. conchonius [60]. This has 

recently been confirmed by Lu et al., who showed that 

expression of vtg genes in the skin of zebrafish was induced 

following the challenge with Gram-negative bacterium 

Citrobacter freundii [65, 66].  

Such results suggest that Vtg first acts as just a multivalent 

pattern recognition receptor able to recognise aggressive 

Gram-negative and Gram-positive bacteria and also fungi and 

is active in host immune response also as scanner. In a recent 

analysis pursuing PGN identification proteins in giant tiger 

shrimp (Penaeus monodone), 83 kDa proteins were extracted 

from an in vitro PGN pull-down binding assay and classified 

as Vtg-like protein by mass spectrometry along with Western 

blots with Vtg-specific monoclonal antibodies recorded from 

P. monodone. [70], involving the Vtg invertebrate also may 

play an important role in the information processing of 

receptors. Scanning electron microscopy and also bacterial 

cell experiments and protoplast analysis revealed that H. 

otakii Vtg was able to kill harmful bacteria by liquefying 

entire cells (with cell walls) rather than just protoplasts 

(without cell walls) by LPS and LTA interactions [71]. They 
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propose the Vtg functions as that of an effector molecule able 

to kill bacteria immediately. It was also noteworthy to note 

that Vtg was capable to facilitate the phagocytosis of 

microbes by macrophages. Li et al. mentioned H. otakii for 

the first time; Vtg might promote the engulfing of the E. coli, 

S. aureus and P. pastoris microbes by head-kidney-derived in 

vitro macrophages [69]. After, carp Vtg was found to have 

related phagocytosis-promoting activity [61]. With the on-site 

analysis of the effects of urban untreated sewage on 

freshwater mould Elliptio complanata, it was found the 

manufacture of Vtg-like protein was closely correlated with 

phagocytosis [72], proposing the relationship among Vtg and 

phagocytosis in invertebrates. In addition, H. Otakii Vtg was 

shown to be able to bind to a cell surface of macrophages and 

also not to those of RBC (red blood cells) [61, 69]. Collectively, 

these findings suggest that Vtg is indeed an opsonine which 

acts serves as a bridge molecule among the host macrophages 

and invasive microbes, resulting in increased phagocytosis. In 

particular, Liu et al. have identified which the H. Otakii Vtg is 

able to typically focused P. pastoris fungus for phagocytosis 

by macrophages extracted by Lateolabrax japonicas sea bass, 

suggesting this Vtg wasn't really species-specific [73]. Even 

more study found that Vtg-opsonized phagocytosis had 

typical characteristics of type I phagocytosis, like extension of 

the pseudopod, reliance on tyrosine kinase, and up-regulation 

of tnf-α and il-1β pro-inflammatory cytokine genes [73]. As a 

consequence, Vtg is indeed an information processing 

receptor susceptible of recognising microbes, a bacterial 

molecule capable of disrupting bacterial cell walls, and an 

opsonine capable of facilitating phagocytosis of pathogens by 

macrophages. Vtg's interdisciplinary immune-relevant 

behaviours are partly equipped with its multiple realms. Sun 

et al. stated that DUF1943 and DUF1944, and even some 

vWD, contributed to the role of Vtg as an information 

processing receptor, and that DUF1943 and DUF1944 (but 

not vWD) also contributed to the role of Vtg as opsonin [21].  

Recent times, Garcia et al. have demonstrated the Atlantic 

salmon Vtg has a neutralising capacity against contagious 

pancreatic necrosis virus [74], indicating that Vtg also is active 

in target anti - viral resistance. This is further confirmed by 

the finding that mosquito (Anopheles gambiae) Vtg became 

able to interact with the anti-plasmodium response [75]. Such 

suggest the Vtg does have anti - viral function alongside 

antibacterial activity, this will require a thorough analysis 

throughout the coming years. 

 

3. Immune functions in yolk proteins  

Lv as well as Pv seem to be the primary yolk proteins 

produced by Vtg's proteolytic processing. Since Vtg is also an 

immunocompetent enzyme, hypothesising that Lv and Pv 

both have equal immune response is therefore rational. This 

hypothesis was first tested by Zhang and Zhang [76]. They 

demonstrated that the native Lv purified from ovulated eggs 

of the rosy barb P. conchonius was able to interact with LPS, 

LTA and PGN, as well as E. coli and S. aureus, but not with 

self-molecules such as the egg extracts prepared, indicating 

that Lv is a molecule capable of recognizing non-self 

components. In addition, Lv's bacterial binding activity 

allowed strengthening it macrophage phagocytosis of the 

bacteria, indicating that Lv is also a functional opsonin in the 

development of embryos / larvae [76]. Similarly, Pv was also 

shown to play a critical role in the immunity of zebrafish 

embryos via acting as a pattern recognition receptor and an 

antimicrobial effector molecule [77]. In line with this, hen egg 

yolk Pv was also shown to be able to inhibit the growth of the 

Gram-negative bacterium E. icoli and the Gram-positive 

bacterium S. aureus under thermal stress [78, 79]. Noteworthy, 

Pv 's affinity to LPS allowed the protein to neutralise 

endotoxin, promoting the endotoxemia mice survival rate [79]. 

It was recently shown that a truncated Pv (Pt5) consisting of 

the C-terminal 55 residues of zebrafish Pv also displayed 

similar immune activities with Pv, including antimicrobial 

activity against E. coli, Aeromonas hydrophila and S. aureus, 

and specific affinity to LPS, LTA, and PGN [77].  

Through intraperitoneal injection of such a Pv-derived 

peptide, the rate of survival of the zebrafish is pathogenic A 

could increase. Hydrophila as well as the amount of 

pathogens in different tissues to decrease markedly, indicating 

that Pt5 may prevent the multiplication / dissemination of the 

pathogen as just an antimicrobial in the host. In addition to 

direct antimicrobial activity, Pt5 was also shown to be able to 

regulate the host immune responses via suppressing the 

expression of pro-inflammatory cytokine genes (il-1β, il-6, 

tnf-α and ifn-γ) and simultaneously enhancing the expression 

of anti-inflammatory cytokine genes (il-10 and il-4), 

suggesting a dual role of Pt5 as both immune effector and 

modulator [80]. Recently, a mutant peptide of Pt5 (designated 

as Pt5e), generated by site-directed mutagenesis, was shown 

to have stronger bactericidal activity and LPS-neutralizing 

activity [81]. 

In addition, Sun et al. have also shown that recombinant 

zebrafish Pv seems to be able to inhibit cytopathic effect 

formation in cells infected with lymphocystis disease virus 

(LCDV) and decreasing the quantity of viruses in highly 

contagious cells along with contaminated zebrafish, 

suggesting that Pv possesses an antiviral activity and 

participates in immune defense of host against the infection 

by viruses like LCDV [82]. Taken together, these data show 

that like Vtg, Lv and Pv are both immune-competent 

molecules involved in immune response of the host against 

invading pathogenic microbes. 

In contrast with immune functions, the antioxidant function is 

another novel role of Vtg. This was first seen with Ando and 

Yanagida that Vtg from Anguilla japonica (eel) was willing to 

tolerate the copper-induced oxidation and might shield the 

very low energy density of lipoprotein (VLDL) from copper-

induced oxidation [83]. It was the first assessment to note 

which Vtg must have antioxidant capacity and is used to 

inhibit free-radical reactions in oocytes of fish. Related 

antioxidant capacity has also been proposed for nematode (C. 

elegans) Vtg [84]. In honeybee, Vtg has been shown to be able 

to suppress oxidative stress by scavenging of free radicals, 

thereby rising the lifetime in optionally sterile castes of 

workers and reproductive queen castes [85, 86]. The honeybee 

Vtg was also demonstrated in a recent study to be capable of 

recognizing cell damage through its binding to membrane and 

shielding living cells from damage by reactive oxygen species 

(ROS) [87]. It's clear that in both invertebrates and vertebrates, 

Vtg protects the cells from damage to ROS.  

Hen-egg yolk is well established Pv, as Vtg-derived major 

protein, show good antioxidant activity due to its high content 

of serine and phosphorus, that makes this protein one of the 

most potent chelating iron agents [88, 89, 90]. Very recently, we 

showed that zebrafish recombinant phosvitin (rPv) was an 

antioxidant agent capable of inhibiting the oxidation of the 

linoleic acid, and scavenging the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) radical. We also showed that zebrafish 

rPv is a cellular antioxidant capable of protecting radical-
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mediated oxidation of cellular biomolecules. Importantly, 

zebrafish rPv is non-cytotoxic to murine macrophages 

RAW264.7 [91]. These findings indicate that Pv is also a 

potent antioxidant in fish. If Lv, another essential protein 

derived from Vtg, any antioxidant activity remains available, 

something worth investigating.  

 

4. Potential uses in the area of public health  

Antibiotics are widely used globally to manage microbial 

infections in clinical practise, but cases of resistance have 

been reported to the majority of antibiotic groups, which has 

become a serious challenge to human health in many parts of 

the world [92, 93]. It is thus essential to develop new antibiotic 

agents to combat these resistant pathogens. Antimicrobial 

proteins/peptides (AMPs) are potential candidates to solve 

this problem. As a protein/peptide with antimicrobial activity 

widely present in plants, animals and microbes, AMP 

commonly is a cationic and amphipathic molecule with a net 

positive charge and a high percentage of hydrophobic residues 
[94]. These structural features provide AMP with the ability to 

interact with microorganisms' anionic cell wall and 

phospholipid membranes, which makes resistance production 

more difficult for pathogens [95]. Vtg and its derived protein 

Pv from oviparous species, especially teleost fishes, both 

display antibacterial activities with a broad antibacterial 

spectrum [59, 60, 61, 62, 68, 71, 77, 78, 79], and hence can be used as 

pro-drug to develop novel antibiotic agents. For example, a 

single or double mutagenesis produced a total of six mutant 

peptides based on the residual sequence of Pt5, the C-terminal 

peptide of zebrafish Pv; among these, a mutant named Pt5e 

showed stronger antibacterial activity against E. coli and S. 

aureus [81], and was able to kill five strains of multiple drug 

resistance bacteria isolated from clinical cases via disturbing 

their cell membrane integrity [96, 97, 98, 99]. 

 

5. Conclusions 
Vtg, the forerunner of major egg yolk proteins, is historically 

thought to provide protein- and lipid-rich nutrients for embryo 

and larvae development. However, the collection of evidence 

suggests that Vtg and its related proteins Lv and Pv also have 

non-nutritional functions: they are not only active in immune 

response but also in antioxidant reactions. These non-

nutritional functions explicitly enhance and expand our 

knowledge of the biochemical roles of molecules and, at the 

same time, offer a solid foundation for the future application 

of the molecules in human health. 
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