

E-ISSN: 2320-7078 P-ISSN: 2349-6800

www.entomoljournal.com JEZS 2020; 8(4): 1745-1753 © 2020 JEZS Received: 05-05-2020 Accepted: 08-06-2020

Kyaw Lin Maung Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Yin Yin Mon

Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Myat Phyu Khine

Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Khin Nyein Chan

Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Aye Phyoe

Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Aye Thandar Soe

Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Thae Yu Yu Han

Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Wah Wah Myo

Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Aye Aye Khai

Professor and Head, Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Corresponding Author: Aye Aye Khai Professor and Head, Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Technology), Kyauk-se, Myanmar

Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com

Arthropods diversity as ecological indicators of agricultural sustainability at la yaung taw, Naypyidaw union territory, Myanmar

Kyaw Lin Maung, Yin Yin Mon, Myat Phyu Khine, Khin Nyein Chan, Aye Phyoe, Aye Thandar Soe, Thae Yu Yu Han, Wah Wah Myo and Aye Aye Khai

Abstract

Arthropod diversity was considered as ecological indicators of sustainable agriculture and forest management. High-quality habitats have the relation with healthy ecosystem functioning. In this study, we collected the 101 species of arthropods which consists of 40 species of butterflies, 19 species of flies, 14 species of beetles, 10 species of grasshoppers, 7 species of wasps, 6 species of bugs, 3 species moths, 1 species of millipede and 1 species of centipede at la yaung taw, Naypyidaw union territory, Myanmar. Shannon-Wiener's diversity indexes, Pielou's Evenness Index (Equitability) and relative abundance in arthropods were analyzed. Arthropod's diversity index was observed as 1.717 while the evenness index was 0.372. Importantly, relative abundance of butterflies is the highest as 39.6% among the arthropods. Thus, we suggest that Naypyidaw union territory possesses the sustainable agriculture of healthy ecosystem with high-quality habitats by the evidence of arthropod's diversity index and butterflies assembling.

Keywords: Arthropods, diversity, ecological indicator, sustainable agriculture, Naypyidaw union territory

Introduction

In fauna and biological studies, the occurrence of native arthropods is very important to achieve conservation goals on the healthy ecosystem ^[1]. Arthropods biodiversity were monitored by the application of surrogate ecological parameters such as ecological land classification and habit classification systems ^[2]. Maintaining high-quality habitats is very important to enhance arthropod diversity in agriculture and forest management ^[3]. Host adaptation for arthropod diversity is more active to the relatively cool condition than increasing in temperature and emerging infectious diseases ^[4].

The spatial abundance of butterflies cannot be predicted from environmental suitability and ecological factors as well as climatic patterns ^[5]. The relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems is depend on how ecological communities are structured, and the forces driving species extinctions and invasions ^[6, 7, 8]. Arthropods play vital roles in various ecosystem functions and respond acutely to habitat manipulation ^[9].

The abundance of many arthropods correlated between forest patches of different sizes and also between forest edges and stand interiors ^[10]. Arthropods are suitable bio-indicators of organic farming of protected systems ^[11, 12]. The butterfly communities were disturbed as human's land use effect by comparing the diversity and structure of communities ^[13]. Biodiversity show the habitat and landscape by means of a multi-indicator concept in different landscape situation ^[14, 15]. Naypyidaw is the new capital city of Myanmar and the overall changes in ecosystem provisions by symmetrically changing land use in priority areas ^[16].

Our research is mainly focus on the better understanding of arthropods' diversity on the sustainable agriculture of agro-ecosystem. We observed the diversity of arthropods and abundance of butterflies, flies, grasshoppers, beetles, wasps, bugs, centipede and millipede. Furthermore the Shannon Weiner diversity index, Pielou's Evenness Index (Equitability) and relative abundance of the family were examined at la yaung taw, Naypyidaw union territory, Myanmar.

Materials and Methods

Study area and Specimens Collections

The study site is the la yaung taw agricultural landscaping site, Naypyidaw union territory and it is situated latitude 19° 44' 42.00" N, longitude 96° 07' 46.99" E in the central parts of Myanmar. The location was selected based on the geographically important and abundance of natural host plants and landscaping site with 7,054.37 km2 area. The specimen collections of arthropods were examined by a stratified random sampling design across agricultural landscaping habitats.

Morphological Identification

The research was conducted by co-operation of Biotechnology Research Department, Ministry of Education (Science and Technology), Kyauk-se, 05151, Myanmar and la yaung taw, Daw Khin Kyi foundation, Naypyidaw Union Territory, Myanmar from June to December, 2019. The specimens were identified base on the morphological characteristics with the pattern of colors, shape, size, habitat and behaviors by using the several documented pictures of the different angles ^[17, 18, 19].

Data analysis

Shannon-Wiener diversity index (H^{$^}$) with different characteristics were analyzed as the following formula ^[20, 21].</sup>

$H' = \sum Pi (lnPi)$

Here, Pi = the proportion of the *i*th species in the total sample Pielou's Evenness Index (Equitability) or J'was conducted with the following formula. The species evenness is the proportion of individuals among the species.

J' = H' / H max

Where

Hmax = ln(S) is the maximum possible diversity index S = the number of species present in the site.

The relative abundance of arthropods was determined by the following formula ^[20, 21].

Relative Abundance (%) =
$$\frac{n}{N} \times 100$$

Where

n = the numbers of individuals of particular recorded species N = the total number of individuals of recorded species

Results

Diversity index and Evenness of Arthropods

Diversity index of the Arthropods were estimated with Shannon-Wiener diversity index at la yaung taw, Naypyidaw union territory. H' (Shannon-Wiener diversity index) was observed as 1.717 which is more than median index while J' (Pielou's Evenness Index) was suggested as 0.372 (Table 1).

Species	Р	Pi	Ln(pi)	Pi* Ln(pi)	-Pi* Ln(pi)	Η´	J´
butterflies	40	0.396	-0.926	-0.366	0.366		
Flies	19	0.188	-1.671	-0.314	0.314		
Beetles	14	0.138	-1.980	-0.273	0.273		
Grasshoppers	10	0.099	-2.312	-0.228	0.228		
Wasps	7	0.069	-2.673	-0.184	0.184	1.717	0.372
Bugs	6	0.059	-2.830	-0.166	0.166		
Moths	3	0.029	-3.540	-0.102	0.102		
Centipede	1	0.009	-4.710	-0.042	0.042	_	
Millipede	1	0.009	-4.710	-0.042	0.042		

Table 1: Shannon-Wiener diversity index and Pielou's Evenness Index (Equitability) of arthropods at la yaung taw, Naypyidaw Union Territory.

The diversity of butterflies

The totals of 40 species belonging to the 6 families (Nymphalidae, Lycaenidae, Hesperiidae, Pieridae, Papilionidae and Ridodinidae) were observed as high diversity with families Nymphalidae at la yaung taw, Naypyidaw union territory (Table 2). Among them, the representative 6 species in 8 families were shown in Figure 1,2,3 and 4.

Fig 1: The original six pictures of the selective butterfly species (family Nymphalidae) A. Junonia orithya, B. Junonia lemonias, C. Junonia hierta, D. Junonia atlites, E. Junonia rhadama and F. Junonia almanac at la yaung taw, Naypyidaw union territory.

Fig 2: The original six pictures of butterfly species (family Lycaenidae) A. Papilio demoleus, B. Castalius fasciatus, C. Castalius rosimon, D. Jamides celeno E. Catochrysops strabo and F. Spindasis syama at la yaung taw, Naypyidaw union territory.

Fig 3: The original six pictures of butterfly species (family Hesperiidae) A. Udaspes folus, B. Matapa aria, C. Loxura atymnus, D. Badamia exclamationis, E. Notocrypta paralysos, and F. Telicota augias at la yaung taw, Naypyidaw union territory.

Fig 4: The original six pictures of butterfly species (family Pieridae, Papilionidae and Ridodinidae) A. *Eurema blanda*, B. *Catopsilia pomona*, C. *Catopsilia scylla*, D. *Pachliopta aristolochiae*, E. *Papilio polytes*, and F. *Abisara geza* la yaung taw, Naypyidaw union territory.

 Table 2: The diversity of Butterflies (common name, scientific name, order, family, genus, and species) at la yaung taw, Naypyidaw union territory.

Ma	Common Nama	Saiantifia Nama	Onden	Eenstler	Carra	C
INO 1		Scientific Name	Urder	Family	Genus	Species
1	Blue Pansy	Junonia orithya wallacei	Lepidoptera	Nymphalidae	Junonia	orithya
2	lemon pansy	Junonia lemonias	Lepidoptera	Nymphalidae	Junonia	lemonias
3	Yellow Pansy	Junonia hierta	Lepidoptera	Nymphalidae	Junonia	hierta
4	Gray Pansy	Junonia atlites atlites	Lepidoptera	Nymphalidae	Junonia	atlites
5	Brilliant blue	Junonia rhadama	Lepidoptera	Nymphalidae	Junonia	rhadama
6	Peacock Pansy	Junonia almana	Lepidoptera	Nymphalidae	Junonia	almana
7	Dark Brand Bush Brown	Mycalesis mineus macromalayana	Lepidoptera	Nymphalidae	Mycalesis	mineus
8	Dinghy Bush Brown	Mycalesis perseus cepheus	Lepidoptera	Nymphalidae	Mycalesis	perseus
9	Tawny Coster	Acraea terpsicore	Lepidoptera	Nymphalidae	Acraea	terpsicore
10	Common Leopard	Phalanta phalantha	Lepidoptera	Nymphalidae	Phalanta	phalantha
11	Plain Tiger	Danaus chrysippus chrysippus	Lepidoptera	Nymphalidae	Danaus	chrysippus
12	Blue Glassy Tiger	Ideopsis vulgaris macrina	Lepidoptera	Nymphalidae	Ideopsis	vulgaris
13	Spotted Black Crow	Euploea crameri bremeri	Lepidoptera	Nymphalidae	Euploea	crameri
14	Bamboo treebrown	Lethe europa	Lepidoptera	Nymphalidae	Lethe	europa
15	Common Five Ring	Ypthima baldus newboldi	Lepidoptera	Nymphalidae	Ypthima	baldus
16	Great Egg Fly	Hypolimnas bolina bolina	Lepidoptera	Nymphalidae	Hypolimnas	bolina
17	Common Paln Fly	Elymnias hypermnestra	Lepidoptera	Nymphalidae	Elymnias	hypermnestra
18	Leopard Lacewing	Cethosia cyane	Lepidoptera	Nymphalidae	Cethosia	cyane
19	Common Sailor	Neptis hylas	Lepidoptera	Nymphalidae	Neptis	hylas
20	Lime Butterfly	Papilio demoleus	Lepidoptera	Lycaenidae	Castalius	demoleus
21	Common Pierrot	Castalius fasciatus	Lepidoptera	Lycaenidae	Castalius	fasciatus
22	Common Pierrot	Castalius rosimon rosimon	Lepidoptera	Lycaenidae	Castalius	rosimon
23	Common Caerulean	Jamides celeno aelianus	Lepidoptera	Lycaenidae	Jamides	celeno
24	Forget-me –not	Catochrysops strabo strabo	Lepidoptera	Lycaenidae	Catochrysops	strabo
25	Club Silverline	Spindasis syama terana	Lepidoptera	Lycaenidae	Cigaritis	syama
26	Grass Demon	Udaspes folus	Lepidoptera	Hesperiidae	Udaspes	folus
27	Common Redeye	Matapa aria	Lepidoptera	Hesperiidae	Matapa	aria
28	Yamfly	Loxura atymnus fuconius	Lepidoptera	Hesperiidae	Metapa	spra
29	Brown Awl	Badamia exclamationis	Lepidoptera	Hesperiidae	Badamia	exclamationis
30	Banded Demon	Notocrypta paralysos varians	Lepidoptera	Hesperiidae	Notocrypta	paralysos
31	Palm Dart	Telicota augias augias	Lepidoptera	Hesperiidae	Telicota	augias
32	Three Spot Grass Yellow	Eurema blanda snelleni	Lepidoptera	Pieridae	Eurema	blanda
33	Lemon Emigrant	Catopsilia Pomona Pomona	Lepidoptera	Pieridae	Catopsilia	pomona
34	Orange Emigrant	Catopsilia Scylla cornelia	Lepidoptera	Pieridae	Catopsilia	scylla
35	Mottled Emigrant	Catopsilia pyranthe pyranthe	Lepidoptera	Pieridae	Catopsilia	pyranthe
36	Striped Albatross	Appias libythea olferna	Lepidoptera	Pieridae	Appias	libythea
37	Common Rose	Pachliopta aristolochiae asteris	Lepidoptera	Papilionidae	Pachilopta	aristolochiae
38	Tailed Jay	Graphium agamemnon	Lepidoptera	Papilionidae	Graphium	agamemnon
39	Common Mormon	Papilio polytes	Lepidoptera	Papilionidae	Papilio	polytes
40	The Spotted Judy	Abisara geza niya	Lepidoptera	Ridodinidae	Abisara	gesa

The diversity of flies

The totals of 19 species flies and 14 species of beetles were observed as high diversity with family Tephritidae and Buprestidae in flies and beetles respectively at la yaung taw, Naypyidaw union territory (Table 3). The representative 6 species in 5 families in flies were shown in Figure 5.

Fig 5: The original six pictures of representative fly species (family Ulidiidae, Stratiomyidae, Tachinidae, Dolichopodidae, Asilidae and Asilidae respectively) A. *Delphinia picta*, B. *Hermetia illucens*, C. *Trigonospila brevifacies*, D. *4. Dolichopodidae*, E. *Dioctria rufipes* and F. *Diogmites crudelis* at la yaung taw, Naypyidaw union territory.

Table 3: The diversity of Flies and Beetles (common name, scientific name, order, family, genus, and species) at la yaung taw, Naypyidaw union territory.

NT.	0	Cl. 4 (* NT		D	0	Guardan
INO.	Common name	Scitenfic Name	Order	Family	Genus	Species
1	Ell- El-	Files	Distant	Canada and a state of	C	1
1	Flesh Fly	Sarcophaga bercaea	Diptera	Daliahanadidaa	Austrophaga	bercaea
2	Long Legged Fly	Austrosciapus sp.	Diptera	Dolichopodidae	Austrosciapus Changagana an	-
3	Creen long logged flips	Chrysosoma sp.	Diptera	Dolichopodidae	Austrosoianus	-
4 5	Pobber Fly	Austrosciapus connexus	Diptera	Claphydronaura	claphydronaura	bocker
5	Marmalada hoverfly	Enisymphus baltaatus	Diptera	Symphidae	Enisyrphus	baltoatus
7	Black Soldier fly	Harmatia illucans	Diptera	Strationvidae	Hermetia	illucans
8	Oriental Latrine Elv	Chrysomya magacanhala	Diptera	Calliphoridae	Chrysonwa	meaacenhal
0	Red-Legged Robberfly	Dioctria rufines	Diptera	Asilidae	Dioctria	rufines
10	-	Diogmites crudelis	Diptera	Asilidae	Diogmites	crudelis
11	Flesh Fly	Sarconhaga spp	Diptera	Sarconhagidae	Sarconhaga	-
12	Picture wing Fly	Delnhinia nicta	Diptera	Ulidiidae	Delphinia	nicta
13	Thin Tachinid Fly	Trigonospila brevifacies	Diptera	Tachinidae	Trigonospila	brevifacies
14	Beetle Flies	Celvphus obtectus	Diptera	Celvphidae	Celvphus	obtectus
15	beetle Flies	Celphyus abnormis	Diptera	Celyphidae	Celphyus	abnormis
16	Oriental fruit fly	Bactrocera dorsalis	Diptera	Tephritidae	Bactrocera	dorsalis
17	Guava fruit fly	Bactrocera correcta	Diptera	Tephritidae	Bactrocera	correcta
18	Melon fly	Bactrocera cucurbitae	Diptera	Tephritidae	Bactrocera	cucurbitae
19	Common fruit fly	Drosophila melanogaster	Diptera	Drosophilidae	Drosophila	melanogaster
		Beetle	es			
1	Leaf Beetles	Lemadaturaphila	Coleoptera	Chrysomelidae	Lema	daturaphila
2	-	Sagrafemorata	Coleoptera	Chrysomelidae	Sagra	femorata
3	Wood Boring Jewel Bettle	Belionotaaenea	Coleoptera	Buprestidae	Belionota	aenea
4	Jewel Beetle	Agrilusplanipennis	Coleoptera	Buprestidae	Agrilus	planipennis
5	Jewel Beetle	Sternoceraaeauisignata	Coleoptera	Buprestidae	Sternocera	aeauisignata
6	Jewel Beetle	Sternocerasp	Coleoptera	Buprestidae	Sternocera	-
7	Round-necked Longhorn Beetle	Pachyterialambii	Coleoptera	Cerambycidae	Pachyteria	lambii
8	Citrus long-horned beetle	Anoplophorachinensis	Coleoptera	Cerambycidae	Anoplophora	chinensis
9	Longhorn Beetle	Aristobiaapproximator	Coleoptera	Cerambycidae	Aristobia	approximator
10	Bess Beetle	<i>Odontotaeniusdisjunctus</i>	Coleoptera	Passalidae	Odontotaenius	disjunctus
11	Ladybird Beetle	Diomus terminates	Coleoptera	Coccinellidae	Diomus	terminatus
12	Ladybird Beetle	Coelophorainaequalis	Coleoptera	Coccinellidae	Coelophora	inaequalis
13	Mottled Tortoise Beetle	Deloyalaguttata	Coleoptera	Chrysomelidae	Deloyala	guttata
14	Mimusop Stem Borer	Pachyteriadimidiata	Coleoptera	Cerambycidae	Pachyteria	dimidiata
No.	Common name	Scitenfic Name	Order	Family	Genus	Species
		Flies	5	-	-	-
1	Flesh Fly	Sarcophaga bercaea	Diptera	Sarcophagidae	Sarcophaga	bercaea
2	Long legged Fly	Austrosciapus sp.	Diptera	Dolichopodidae	Austrosciapus	-
3	Long-Legged Fly	Chrysosoma sp.	Diptera	Dolichopodidae	Chrysosoma sp.	-
4	Green long-legged flies	Austrosciapus connexus	Diptera	Dolichopodidae	Austrosciapus	connexus
5	Robber Fly	clephydroneura becker	Diptera	Clephydroneura	clephydroneura	becker
6	Marmelade hoverfly	Episyrphus balteatus	Diptera	Syrphidae	Episyrphus	balteatus
7	Black Soldier fly	Hermetia illucens	Diptera	Stratiomyidae	Hermetia	illucens
8	Oriental Latrine Fly	Chrysomya meqacephala	Diptera	Calliphoridae	Chrysomya	meqacephal
9	Red-Legged Robberfly	Dioctria rufipes	Diptera	Asilidae	Dioctria	rufipes
10	-	Diogmites crudelis	Diptera	Asilidae	Diogmites	crudelis
11	Flesh Fly	Sarcophaga spp	Diptera	Sarcophagidae	Sarcophaga	-
12	Picture wing Fly	Delphinia picta	Diptera	Ulidiidae	Delphinia	picta
13	Thin Tachinid Fly	Trigonospila brevifacies	Diptera	Tachinidae	Trigonospila	brevifacies
14	Beetle Flies	Celyphus obtectus	Diptera	Celyphidae	Celyphus	obtectus
15	Deetle Flies	Celpnyus abnormis	Diptera	Territit	Celphyus	abnormis
10	Oriental fruit fly	Bactrocera dorsalis	Diptera	Tephritidae	Bactrocera	aorsalis
1/	Guava fruit fly	Bactrocera correcta	Diptera	Tephritidae	Bactrocera	correcta
18	Commune first fi	Dreagenhile wele	Diptera	Dreasshill	Bactrocera	cucurbitae
19	Common fruit fly	Drosophila melanogaster	Diptera	Drosophilidae	Drosophila	melanogaster
1	L a - f D 41-	Law a lature 111	Colorer	Charge	I	d at
1	Leaf Beetles	Lemadaturaphila	Coleoptera	Chrysomelidae	Lema	aaturaphila
2	- Wood Daring Law 1D, 41	Sagrafemorata Dalianatana	Coleoptera	Durgen at 1	Sagra Daliana (femorata
5	wood Boring Jewel Bettle	Bellonotaaenea	Colema	Buprestidae	Belionota	aenea
4	Jewel Beetle	Agritusplanipennis	Colema	Buprestidae	Agrilus	planipennis
э с	Jewel Beetle	Sternoceraaequisignata	Coleoptera	Buprestidae	Sternocera	aequisignata
0	Jewei Beelle	Dachertorialan1:	Colcoptera	Corombusile	Dachestori -	- 1
0	Citrus long home 1 hards	Fuchyterialambii	Colcoptera	Corombusidae	r uchyteria	iambii
ð	Citrus long-norned beetle	Anopiopnoracninensis	Coleoptera	Cerambycidae	Anopiopnora	cninensis

Journal of Entomology and Zoology Studies

http://www.entomoljournal.com

9	Longhorn Beetle	Aristobiaapproximator	Coleoptera	Cerambycidae	Aristobia	approximator
10	Bess Beetle	Odontotaeniusdisjunctus	Coleoptera	Passalidae	Odontotaenius	disjunctus
11	Ladybird Beetle	Diomus terminates	Coleoptera	Coccinellidae	Diomus	terminatus
12	Ladybird Beetle	Coelophorainaequalis	Coleoptera	Coccinellidae	Coelophora	inaequalis
13	Mottled Tortoise Beetle	Deloyalaguttata	Coleoptera	Chrysomelidae	Deloyala	guttata
14	Mimusop Stem Borer	Pachyteriadimidiata	Coleoptera	Cerambycidae	Pachyteria	dimidiata

The diversity of beetles

The totals of 14 species were observed as high diversity with family Buprestidae at la yaung taw, Naypyidaw union

territory. Among them, the representative 6 species in 3 families were shown in Figure 6.

Fig 6: The original six pictures of representative Beetles species (family Buprestidae, Cerambycidae, Passalidae) A. Sternocera aequisignata, B. Anoplophora chinensis, C. Pachyteria lambii, D. Aristobia approximator, E. Belionota aenea and F. Odontotaenius disjunctus at la yaung taw, Naypyidaw union territory.

 Table 4: The diversity of grasshoppers, wasps, bugs, moths, centipede and millipede (common name, scientific name, order, family, genus, and species) at la yaung taw, Naypyidaw union territory.

No.	Common name	Scitenfic Name	Order	Family	Genus	Species				
	Grasshopper									
1	Short-horned Grasshopper	Oxyahyla intricate	Orthoptera	Acrididae	Oxya	hyla				
2	Meadow Grasshopper	chorthippusparallelus	Orthoptera	Acrididae	chorthippus	parallelus				
3	Carolina Grasshopper	Dissosteiracarolina	Orthoptera	Acrididae	Dissosteira	carolina				
4	-	Chorthippusbrunneus	Orthoptera	Acrididae	Chorthippus	brunneus				
5	-	Romaleamicroptera	Orthoptera	Acrididae	Romaleinae	Romalea				
6	Common Green Grass Hopper	Omocestusviridulus	Orthoptera	Acrididae	Omocestus	viridulus				
7	Eastern Lubber Grasshopper	Romaleamicropter	Orthoptera	Acrididae	Romalea	microptera				
8	Small Rice Grasshopper	Oxya Japonica	Orthoptera	Acrididae	Oxya	Japonica				
9	Grasshoppers	Erianthussp	Orthoptera	Chorotypidae	Erianthus	-				
10	-	Atractomorphcrenulata	Orthoptera	Pyrgomorphidae	Atractomorph	Acrenulata				
			Wasps							
1	-	Sceliphronlaetum	Hymenoptera	Sphecidae	Sceliphron	laetum				
2	-	Polistescarnifex	Hymenoptera	Vespidae	Polistes	carnifex				
3	-	Ropalidiamarginata	Hymenoptera	Vespidae	Ropalidia	marginata				
4	Yellowjacket	Vespula	Hymenoptera	Vespidae	Vespula	-				
5	Blue Banded Bee	Amegillacingulata	Hymenoptera	Apidae	Amegilla	cingulata				
6	Honey Bees	Apis	Hymenoptera	Apidae	Apis	-				
7	Stem borer	Trichogramma japonica	Hymenoptera	Trichogrammatidae	Trichogramma	japonica				
			Bugs							
1	Leaf-footed Bug	Leptoglossusoppositus	Hemiptera	Coreidae	Leptoglossus	oppositus				
2	True bug	Antilochuscoquebertii	Hemiptera	Pyrrhocoridae	Antilochus	coquebertii				
3	Broad-headed Bug	Megalotomusquinquespinosus	Hemiptera	Alydidae	Megalotomus	quinquespinosus				
4	Plant bug	Trigonotylusspp	Hemiptera	Miridae	Trigonotylus	-				
5	Sugarcane Spittle Bug	Callitettixversicolor	Hemiptera	Cercopidae	Callitettix	versicolor				
6	Water Striker	Gerridae	Hemiptera	Gerridae	-	-				
			Moths							
1	Hooded Owl Moth	Cucullia asteroides	Lepidoptera	Noctuidae	Cucullia	asteroides				
2	-	Zygaenaephialtes	Lepidoptera	Zygaenidae	Zygaena	ephialtes				

3	Owl moth	Brahmaea wallichii	Lepidoptera	Brahmaeidae	Brahmaea	wallichii		
	Centipede							
1	Centipede	Scolopendragigantea	Scolopendromorpha	Scolopendridae	Scolopendra	gigantea		
Millipede								
1	Millipede	Archispirostreptusgigas	Spirostreptida	Spirostreptidae	Archispirostreptus	gigas		

The diversity of grasshopper

The totals of 10 species grasshopper, 7 species wasps, 6 species bugs, 3 species moths, 1 species centipede and 1 species millipede were discovered as high diversity with family Acrididae, Vespidae, in grasshopper and wasps respectively at la yaung taw, Naypyidaw union territory (Table 4). The representative 6 species in 1 family grasshopper were shown in Figure 7.

Fig 7: The original six pictures of representative grasshopper species (family Acrididae) A. *Dissosteira Carolina*, B. *Chorthippus brunneus*, C. *chorthippus parallelus*, D. *Romalea microptera*, E. *Romalea micropter* and F. *Oxya hyla intricates* at la yaung taw, Naypyidaw union territory.

The diversity of wasps, bugs, moths, centipede and millipede

The totals of 7 species (wasps), 6 species (bugs), 3 species (moth), 1 species (centipede) and 1 species (millipede) were observed at la yaung taw, Naypyidaw union territory (Table 5). Among them, the representative 6 species were shown in Figure 8.

Fig 8: The original picture of representative wasps, bugs, moth, centipede and millipede species A. *Polistes carnifex*, B. *Sceliphron laetum*, C. *Callitettix versicolor*, D. *Cucullia asteroids*, E. *Scolopendra gigantea* and F. *Archispirostreptus gigas* at la yaung taw, Naypyidaw union territory.

Relative abundance of Arthropods

The relative abundance (RA) were observed as 39.6% with the highest butterflies species while the centipede and millipede 0.9% as the lowest species at la yaung taw, Naypyidaw union territory (Figure 9).

Fig 9: Relative abundance of arthropods (butterflies, flies, beetles, grasshoppers, wasps, bugs, moths, centipede and millipede) at la yaung taw, Naypyidaw union territory.

Discussion

In China, 114 species of arthropods (58 species of spiders, 16 species of predatory insects, 25 species of phytophagous insects, 15 species of other insects), and 109 species of arthropods (50 species of spiders, 19 species of predatory insects, 24 species of phytophagous insects, and 16 species of other insects) were observed in the early and late season crop respectively ^[22]. Here, we discovered the total of the 101 species of arthropods which consists of 40 species of butterflies, 19 species of flies, 14 species of beetles, 10 species of grasshoppers, 7 species of wasps, 6 species of bugs, 3 species moth, 1 species of millipede and 1 species of centipede at la yaung taw agricultural landscaping site, Naypyidaw union territory. Twenty species of harmful arthropods with the 17 families 6 orders were found in Brinjal Field, Gazipur, Bingaladish^[23]. The family of Diptera (Some flies), Scolopendridae (Centipede) and Spirostreptidae (Millipede) were indicated as the harmful arthropods in Naypyidaw union territory. The abundance of butterflies is the highest and it indicates the healthy above-ground ecosystem at Naypyidaw union territory.

Although the distribution of parasitoids were higher in integrated pest management paddy fields than in nonintegrated pest management paddy fields, it is the same distribution in others arthropods ^[24]. In non-integrated pest management at Naypyidaw union territory, the distribution of wasps such as parasitoids, bees is not higher than butterflies. In biodiversity-agro ecosystem functioning relationships, plant diversity effects on arthropods and arthropod-dependent ecosystem ^[25]. Arthropods diversity index is more than 1 in Naypyidaw union territory with the relationships of host plant diversity vice visa. Different spatial distribution patterns in the landscape show the high diversity index of butterfly mean that ecosystem functioning ^[26]. We observed the same as butterflies assembling with the highest relative abundance. The ecological suitability of forest management treatments responds to beetles and spiders with the habitats interaction

Journal of Entomology and Zoology Studies

^[27]. The arthropods diversity including beetles species was shown the ecological suitability in Naypyidaw unionterritory. Arthropods abundance in tropical, subtropical and also cool temperate sites shows the healthy ecosystem in Austrilia ^[28]. Naypyidaw union territory which is situated in the tropical region of Myanmar show the spatial arthropods abundance with butterfly assembling.

Arthropod community structure and local impact factors such as habitat and management and surrounding landscape structure affected on the arthropods diversity ^[29]. Naypyidaw union territory was indicated that it belong to the high-quality habitats by the evidence of arthropods abundance. Agroenvironmental indicators assessment needed for data recoding as well as suggestions for a implication of indicator systems ^[30]. Comparing location area, the diversity of arthropods as ecological indicator of sustainable agriculture is recorded as spatial distribution. Managing insects and ecosystems, and their interactions, in ways that ensure sustainability of ecosystem services and that minimize induction of disservices ^[31]. Arthropods abundance with the butterflies assembling show the interaction between arthropods and host plants in sustainable agriculture.

The spatial distribution patterns of butterflies' conservation with species richness have the effective interaction on the high habitats of agro-ecosystem ^[32]. Because of butterflies, flies, beetles, grasshoppers, wasps, bugs, moths, centipede and millipede distribution on the Naypyidaw union territory, it possess the high habitats of agro-ecosystem. The land-use effect on the impact of diversity and functioning of arthropods community associated ecosystem ^[33]. La yaung taw agricultural landscaping site exhibit the high diversity index even they may affect of land-use. Above-ground and below-ground arthropods communities' exhibit different community structure patterns controlled different spatial processes ^[34]. Here, even only above-ground arthropods communities, Naypyidaw union territory poses community structure patterns with high diversity index.

Conclusion

Although the la yaung taw, Naypyidaw union territory is not large area, 101 species of arthropods were occurred and the diversity index is more than 1. Even Naypyidaw union territory is situated at tropical dry zone of Myanmar, arthropods abundance which is related to the high-quality habitats is high. The highest relative abundance of butterflies refers to the healthy ecosystem. Arthropods assembling indicated to lack of constant usage pesticides. Thus, our results reveal that Naypyidaw union territory possesses the sustainable agriculture of healthy ecosystem.

Conflict of interest

All the authors declare no conflict of interest.

Acknowledgements

We would like to express our gratitude to Mr. Lin Htet, la yaung taw, Daw Khin Kyi foundation, www.info@dawkhinkyifoundation.org Naypyidaw union territory, Myanmar for his kind helpful supporting during the study.

References

 Longcore T. Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, U.S.A.). Restoration Ecology. 2003; http://www.entomoljournal.com

11(4):397–409.

- 2. Langor DW, Spence JR. Arthropods as ecological indicators of sustainability in Canadian forests. The forestry chronicle. 2014; 82(3):344-350.
- 3. Previati E, Fano EA, Leis M. Arthropods biodiversity in agricultural landscapes: effects of land use and anthropization. Ital. J Agron. / Riv. Agron. 2007; 2:135-141.
- Cohen JM, Civitello DJ, Venesky MD, McMahon TA, Rohr JR. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob Change Biol. 2018; 00:1-11. https://doi: 10.1111/gcb.14489
- 5. Fliz KJ, Schmitt T, Engler JO. How fine is fine-scale? Questioning the use of fine-scale bioclimatic data in species distribution models used for forecasting abundance patterns in butterflies. Eur. J Entomol. 2013; 110(2): 311–317.
- 6. Hopper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S *et al.* Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs. 2005; 75(1):3-35.
- Tobin PC. Ecological consequences of pathogen and insect invasions. Forest Pathology and Entomology. 2015; 1:25-32.
- Rohr JR, Mahan CG, Kim KC. Response of arthropod biodiversity to foundation species declines: The case of the eastern hemlock. Forest Ecology and Management. 2009; 258(7):1503-1510.
- Maleque MA, Hiroaki T. Ishii, Maeto K. The use of arthropods as indicators of ecosystem integrity in forest management. Journal of Forestry. 2006; 104 (3):113-117.
- 10. Jokimäki J, Huhta E, Itämies J, Rahko P. Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Can. J For. Res. 1998; 28:1068–1072.
- 11. Madzaric S, Ceglie FG, Depalo L, Bitar LA, Mimiola G, Tittarelli F *et al.* Organic vs. organic- soil arthropods as bioindicators of ecological sustainability in greenhouse system experiment under mediterranean conditions. Bulletin of Entomological Research. 2017; 10:1-11. https://doi:10.1017/S0007485317001158.
- 12. Winchester NN, Ring RA. The Biodiversity of Arthropods from Northern Temperate Ancient Coastal Rainforests: Conservation Lessons from the High Canopy. Selbyana. 1999; 20(2):268-275.
- 13. Kitahara M, Sei KA. Comparison of the diversity and structure of butterfly communities in semi-natural and human-modified grassland habitats at the foot of Mt. Fuji, central Japan. Biodiversity and Conservation. 2001; 10:331–351.
- 14. Jeanneret P, Schüpbach B, Pfiffner L. Arthropod reaction to landscape and habitat features in agricultural landscapes. Landscape Ecol. 2003; 18:253–263. https://doi.org/10.1023/A:1024496712579.
- Perfecto I, Vandermeer J, Hanson P. Arthropod biodiversity loss and the transformation of a tropical agro-ecosystem. Biodiversity and Conservation. 1997; 6:935–945. https://doi.org/10.1023/A:1018359429106
- Lwin KK, Hayashi K, Ooba M. Spatial Assessment of ecosystem services by new city development case study in Nay Pyi Taw, Myanmar. International Journal of Environmental and Rural Development. 2016; 7(1):55-61.
- 17. Kaya Y, Kayci L, Uyar M. Automatic identification of

butterfly species based on local binary patterns and artificial neural network. Applied Soft Computing. 2015; 28:132-137.

- 18. Kang SH, Song SH, Lee SH. Identification of butterfly species with a single neural network system. Journal of Asia-Pacific Entomology. 2012; 15:431-435.
- 19. Kang SH, Cho JH, Lee SH. Identification of butterfly based on their shapes when viewed from different angles using an artificial neural network. Journal of Asia-Pacific Entomology. 2014; 17:143-149
- 20. Omayio D, Mzungu E. Modification of shannon-wiener diversity index towards quantitative estimation of environmental wellness and biodiversity levels under a non-comparative Scenario. Journal of Environment and Earth Science. 2019; 9(9):46-57.
- Girma Z, Mengesha G, Asfaw T. Diversity, relative abundance and distribution of avian fauna in and around wondo genet forest, south-central ethiopia. Research Journal of Forestry. 2016; 11(1):1-12. https://doi: 10.3923/rjf.2017.1.12.
- 22. Zhang J, Zheng X, Jian H, Qin X, Yuan F. Arthropod biodiversity and community structures of organic rice ecosystems in guangdong province, China. Florid Entomologist. 2020; 96(1):1-8.
- 23. Latif MA, Rahman MM, Islam MR, Nuruddin MM. Survey of arthropod biodiversity in the brinjal field. Journal of Entomology. 2009; 6(1):28-34.
- 24. Samharinto, Abadi AL, Rahardjo BT, Halim H. The increase of arthropods biodiversity in paddy field ecosystem managed by using integrated pest management at south borneo. The Journal of Tropical Life Science. 2012; 2(3): 72-76.
- 25. Ebeling A, Hines J, Lionel R, Hertzog LR, Lange M, Meyer ST *et al.* Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic and Applied Ecology, 2017. https://doi.org/10.1016/j.baae.2017.09.014.
- 26. Gutierrez JA, WalliDeVries MF, Marshall L, Zelfde MV, Villalobos-Arambula AR, Boekelo B *et al.* Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Global Ecol Biogeogr. 2017; 26:1126-1137.
- 27. Maleque MA, Maeto K, Ismi HT. Arthropods as bioindicators plantatio fnorests of sustainable forest management, with a focus on plantation forests. Entomol. Zoel. 2009; 44(1):1-11.
- 28. Kitching RL, Arthur M. The biodiversity of arthropods from Australian rain forest canopies: summary of projects and the impact of drought. Selbyana. 1993; 14:29-35.
- 29. Boutin C, Martin PA, Baril A. Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species, and landscape context. Ecoscience. 2009; 16(4):492-501. https//doi:10.2980/16-4-3250.
- Büchs W, Harenberg A, Zimmermann J, Wei B. Biodiversity, the ultimate agri-environmental indicator? Potential and limits for the application of faunistic elements as gradual indicators in agroecosystems Agriculture. Ecosystems and Environment. 2003; 98:99-123.
- Schowalter TD, Noriega JA, Tscharntke T. Insect effects on ecosystem services-Introduction. Basic and Applied Ecology. 2017; https://doi: 10.1016/j.baae.2017.09.011.
- 32. Jain A, Lim FKS, Webb EL. Species-habitat relationships

and ecological correlates of butterfly abundance in a transformed tropical landscape. Biotropica. 2017; 49(3):355-364.

- 33. Wilby A, Lan LP, Heong KL, Huyen NPD, Quang NH, Minh NV et al. Arthropod Diversity and Community Structure in Relation to Land Use in the Mekong Delta, Vietnam. Ecosystems. 2006; 9:538–549. https//doi: 10.1007/s10021-006-0131-0.
- 34. Gao M, Sun X, Qiao Z, Hou H, Lu T, Wu D *et al.* Distinct patterns suggest that assembly processes differ for dominant arthropods in above-ground and belowground ecosystems. Pedobiologia - Journal of Soil Ecology. 2018; 69:17-28. https://doi.org/10.1016/j.pedobi.2018.06.003