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Abstract 
Entomopathogenic nematodes are the most important biocontrol agents for the management of insect pest 

population which can be utilized as a tool in integrated pest management programme. Therefore 

interaction with other biocontrol agent specially entomopathogenic fungi reflects the success or failure of 

biocontrol mechanism. This review focuses on different types of interaction of entomopathogenic 

nematodes with entompathogenic fungi. 
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Introduction 

Entomopathogenic nematodes (EPNs) are able to either kill, or hamper the completion of life-

cycle of insect. The genera Steinernema and Heterorhabditis in the family Steinernematidae 

and Heterorhabditidae of the order Rhabditida are obligate parasites of insect pests. They are 

distributed all over the world in natural and agricultural soils. They have huge potential as 

biocontrol agent against a many insect pests of agricultural crops due to their high reproductive 

capacity, ease of mass culture and their harmlessness to environment. The only free-living 

stage in the soil is the third stage juvenile which is the infective stage. They are having closed 

mouth and anus and encased in a double cuticle and are capable of surviving for several weeks 

in the soil, before infecting a new host. The infective juveniles actively enter through the mid 

gut wall or tracheae into the insect body cavity to get insect haemolymph. EPNs have a 

mutualistic association with gram-negative gamma-proteobacteria in the family 

Enterobacteriaceae and are carrying in their intestines [1]. Xenorhabdus bacteria are associated 

with steinernematid nematodes while Photorhabdus are associated with heterorhabditids and 

thereby release the bacteria in the haemolymph. The host insect is killed within 24-48 hours by 

overcoming the insect immune system [2]. The bacteria cause septicemia, and provide food 

sources for the nematode. During the process, the bacteria produce antibiotics and provide a 

protected place and suppress the competition from other microorganisms [3]. After exhaustion 

of all nutrients; infective juveniles develop into high population and coming outside the 

cadaver. The life cycle of heterorhabditids is that IJs always develop into self-reproducing 

hermaphrodites whereas Steinernematids are amphimictic [4]. Strauch et al. [5] observed that 

progeny of the first generation hermaphrodites of heterorhabditids can either develop into 

amphimictic adults or into automictic hermaphrodite both. The pathogenic ability of different 

species of EPNs varies towards a range of insect order, microclimatic condition, as well as in 

terms of their strength as commercial products [6].  

Entomopathogenic fungi (EPF) are important microbial agents against many insect pests [7]. 

There are about 90 genera and 700 species of EPF [8]. Beauveria bassiana (Balsamo-Crivelli) 

Vuillemin, Lecanicillium, Isaria fumosorosea Wize and Metarhizium anisopliae 

(Metschnikoff) Sorokin, are being exploited against insect pests [9]. The conidia attaches and 

penetrates the insect integuments that is achieved by formation of an appressorium [10]. Though 

there is host defense mechanism inside insect host, EPF can cause mortality in the target pest 

by overcoming the mechanisms [11]. Several species of Isoptera [12, 13], Lepidoptera [14-16]
, 

Coleoptera [17], Hemiptera [18], and Diptera [14, 19] are susceptible to various EPF species. 

Efficacy of biocontrol mechanism increases with combined application of several biocontro 

agents instead of one [20]. In this regard, entomopathogenic nematodes in combination with  
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other biocontrol agents increase their efficacy against insect 

pests. Entomopathogenic nematodes have been evaluated in 

combination with insecticides [21-23], biocontrol agents [24, 25], 

and parasitoids [26, 27]. Stiling [28] observed that combination of 

different entomopathogenic species and other biological 

control agents increased the mortality of target insect pests. 

This promising approach is also a ‘dual attack’ approach 

which reduces the application rate of bioagents and the host 

killing time.  

 

Advantages of biocontrol agents applied in combination 

 Different modes of action of different biocontrol agent 

against the target insect pest. 

 More than one stage of the life cycle of the target pest 

may be effected by different biocontrol agent  

 Activity and performance of bioagents are different 

during different the growing season and soil condition. 

 Biocontrol agents are having the ability for persistence in 

soil even in combination. 

 

Type of interaction (Table.1) 

Additive interaction 

Koppenhofer and Grewal [29] stated that additive effects are 

more of independent and magnitude are added up with no 

increment when there is a combination of two. 

 

Synergistic interaction 

When two biocontrol agents are applied together to create an 

overall effect which is greater than the sum of their individual 

effects.  

 

Antagonistic interaction 

Antagonistic interaction is when the net effect of both 

organisms is zero. There are two types of antagonistic 

interaction. Direct antagonism is the infection or predation of 

entomopathogenic nematodes by another organism, where as 

indirect antagonism occurs during competition (either 

interference or exploitation) for resources and spaces [30]. 

Progeny production in nematodes and fungi are less in 

infected hosts [31] because the nematodes symbiotic bacteria 

excluded the other bioagent, the agent infecting first, often 

excluding the other. The antibiotics produced by Xenorhabdus 

nematophilus or Photorhabdus luminescens inhibited the 

growth of B. bassiana. If the fungus was applied before the 

nematode, the antagonistic interactions between B. bassiana 

and S. carpocapae or H. bacteriophora were dependant on 

temperature [32]. On the other hand, fungal antagonism on the 

nematodes may be antibiosis (the production of mycotoxins) 
[33]. B. bassiana infected hosts in soil are better avoided by 

entomopathogenic nematodes. Photorhabdus luminiscens is 

able to inhibit the growth and reproduction of Beauveria 

bassiana, B. brongniarti and Paecilomyces fumosoroseus, 

whereas Xenorhabdus poinari does not [31]. 

In some cases, the combination of two different pathogens 

does not provide an additive or synergistic effect. In a soil 

test, S. carpocapsae and B. bassiana combination produced 

about the same level of mortality as S. carpocapsae alone [31]. 

 

Mode of action during interaction 

It has been observed that in combine application of 

antagonists, one antagonist may alter feeding behaviour or 

movement of the target insect, and thereby more susceptible 

to the other antagonist. Steinhaus [34] was the first to observe 

that stressed insects are more susceptible to antagonists. After 

infection, EPF reduces locomotion, feeding and increasing 

irritability of target insect [35]. M. anisopliae infected insects 

are less mobile; thereby EPNs can penetrate the host more 

easily [36]. Scarab reduction by both EPNs and EPF is that the 

scarab larvae may have been stressed [37-40]. The body length 

of insects is another factor that are infected already by EPF, 

are more debilitated, respire more and thus susceptible to the 

EPNs. In combine application conidia production of EPF 

reduce by the activities Photorhabdus luminescens [41]. 

Shapiro et al., [42] observed that the antagonistic interactions 

between two entomopathogens may be a result of toxins. 

Similarly, Hu and Webster [43] showed that during the first 24 

h of infection by the nematode H. megidis, Photorhabdus 

luminescens (strain C9) activity, producing antibiotic 

compounds and minimizing competition from other 

microorganisms. Isaacson and Webster [44] also showed that 

Xenorhabdus associated with Steinernema riobrave produced 

antibiotic and anti-fungal compounds. A virulent strain of 

nematode can colonize host more rapidly and suppress the 

development of the fungus. But the combination of two highly 

virulent antagonists does not result in the rapid host mortality. 

Only the combination of a highly virulent nematode with a 

moderately virulent fungus or vice versa can cause rapid host 

death. Therefore careful selection of bioagent strains is 

essential before field testing is made. The EPN infective 

juvenile and fungal conidia released from infected cadavers 

can recycle populations, and thus provide longer term 

protection to crops.  

 

Factors effecting interaction  

Interaction between EPNs and EPF depends on the EPN 

species/strains, EPF species, target insect host, application 

parameters, and environmental conditions [17, 36, 40, 42].  

 

Insect defense mechanism 

The interaction might be due to overcoming the mechanism of 

larval cellular and humoral defense system. Phagocytosis, 

nodule formation, cellular encapsulation, melanotic 

encapsulation, and the production of antimicrobial peptides 

are some of the defense mechanism. Against nematodes 

encapsulation and against bacteria phagocytosis is the 

immediate response [45]. Besides these, injury and microbe 

infection leads to production of antimicrobial peptides in 

insect. However, defense responses vary with the species of 

insect and antagonists involved and their physiological states 
[46, 47]. 

 

Time of application 

In some studies, the simultaneous application of nematodes 

with EPF [32] was found to be successful. Additivity in 

Curculio caryae mortality was achieved following 

simultaneous application of pathogens [42]. However, the 

combination of EPNs and EPF in simultaneous applications 

was unsuccessful in woolly apple aphid (WAA) control [48]. 

Additivity or slight synergy was achieved between EPNs and 

M. anisopliae against Holotrichia consanguinea in 

simultaneous application [49].  

When M. anisopliae and B. bassiana were applied one week 

after applying S. glaseri and H. megidis additive effects were 

observed and when fungi were applied four weeks after the 

nematodes synergism were observed [36]. Thus sequential 

application increased additive or synergistic effects [40]
.
  

It was observed that M. anisopliae was the most effective 

fungus against Eriosoma lanigerum. Combining S. 
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yirgalamense with B. bassiana and M. anisopliae was 

unsuccessful for controlling Eriosoma lanigerum [50]. Hence, 

M. anisopliae could be used alone for the management of 

population of WAA, rather in combination with nematodes.  

 

Local isolate of EPN and EPF 

The local isolates, with higher pathogencity should be utilized 

than that of the exotic commercial isolates for specific insect 

control. 

 

Insect host 

In non-soil tests, dual infection with N. carpocapsae and 

Paecilomyces farinosus and with N. carpocapsae and with B. 

bassiana produces accelerated and higher mortality of a 

susceptible insect species G. mellonella. This intensification 

effect is not observed in Tribolium castaneum with N. 

carpocapsae and B. bassiana or in T. castaneum or 

Trogoderma granarium with N. carpocapsae and P. farinosus 

indicating that the insect host has an effect on this interaction 

between nematodes and fungus [51, 52].
 

Table 1: Interaction of Entomopathogenic nematode with Entomopathogenic fungi 
 

Entomopathogenic Nematode Entomopathogenic Fungi Insect pest Type of Interaction References 

Heterorhabditis megidis 

Steinernema glaseri 
Metarhizium anisopliae CLO53 Hoplia philanthus Additive or Synergistic [17] 

H. bacteriophora Beauveria bassiana Spodoptera exigua Additive [31] 

S. feltiae 

H. heliothidis 
B. bassiana Galleria mellonella Antagonistic [32] 

H. Megidis 

S. glaseri 

M. anisopliae 

B. bassiana 
H. philanthus 

Synergistic 

and/or additive 
[36] 

S. yirgalamense B. bassiana 
Eriosoma lanigerum Antagonistic [40, 54] 

S. yirgalamense M. anisopliae 

H. indica S. carpocapsae Paecilomyces fumosoroseus Curculio caryae Antagonism 
[42] 

 

H. indica M. anisopliae 

Curculio caryae 

Additive 

H. indica 

S. carpocapsae 
B. bassiana Antagonistic 

H. bacteriophora M. anisopliae Holotrichia consanguinea Additivity or slight synergy [49] 

Neoaplectana carpocapsae P. farinosus Galleria mellonella Synergistic 
[51] 

N. carpocapsae P. farinosus 
Tribolium castaneum 

Trogoderma granarium 
Antagonistic 

N. carpocapsae B. bassiana Tribolium castaneum Antagonistic [52] 

H. bacteriophora JPM4 M anisopliae Diatraea saccharalis Synergistic [55] 

H. bacteriophora S. yirgalemense M. anisopliae B. bassiana Coptognathus curtipennis Synergistic [56] 

H. bacteriophora 

S. feltiae 

S. kraussei 

M. anisopliae V275 Otiorhynchus sulcatus 
Synergistic 

Additive 
[57] 

S. kraussei M. anisopliae Otiorhynchus sulcatus Synergistic [58] 

Steinernema sp. B. assiana Galleria mellonella Additive [59] 

S. carpocapsae B. brongniartii 
Ectinohoplia rufipes 

Exomala orientalis 
Synergistic [60] 

S. thermophilum 
B. bassiana 

M. anisopliae 
Solid growth media Antagonistic [61] 

H. zealandica B. bassiana Galleria mellonella Synergistic [62] 

Heterorhabditis sp. M. anisopliae Oryctes rhinoceros Synergistic [63] 

H. bacteriophora 

S. carpocapsae 

S. feltiae 

S. sp. 

M. anisopliae Curculio nucum 
No 

Antagonistic or Synergistic 
[64] 

H. bacteriophora 

 

 

H. bacteriophora 

B. bassiana simultaneous application 

Delayed application 

M. anisopliae 

simultaneous application 

Delayed application 

Rhynchophorus ferrugineus 

 

Additive 

Synergistic 

Additive 

Synergistic 

[65] 

H. bacteriophora 
M. anisopliae 

B. bassiana 
Otiorhynchus sulcatus Synergistic [66] 

H. bacteriophora 

S. carpocapsae 

M. anisopliae 

B. bassiana 
Curculio elephas Synergistic [67] 

H. bacteriophora HNI0100 

M. anisopliae 

Ma 9236 

B. bassiana 

Bb 9205 

Plutella xylostella Synergistic [68, 69] 

H. bacteriophora Nomuraea rileyi Spodoptera frugiperda Antagonistic [70] 

S. ichnusae B. bassiana G. mellonella Antagonistic [71] 

N. dutkyi 
M. anisopliae 

B. bassiana 
Curculio caryae Synergistic [72] 

H. bacteriophora B. bassiana Rhynchophorus ferrugineus Synergistic [73] 
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Conclusion 

Whether the combination of entomopathogenic nematodes 

and entomopathogenic fungi will be used in integrated 

management plan will depend on the interaction of individual 

agent, efficacy of their combination, its cost of production in 

comparison with chemical insecticides. The combination 

should also be cheaper than either single bioagent alone at the 

same efficacy level. Before application, one should know 

whether releasing one natural enemy against a pest is likely to 

be more effective than the release of many, where competition 

between enemies might reduce their overall effectiveness [53]. 

We should try to reduce both fungus and nematode 

application rate to about one forth of recommended rate and 

still get more than 80% insect mortality. The interactions with 

these other microbiological agents in non soil and soil 

conditions must be understood before their use. 
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