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Streptomycetes as a potential biocontrol agent  

 
Dr. K Yamunarani, Dr. A Kalyana Sundaram and Dr. M Pandiyan 

 
Abstract 
Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in 

serious environmental and health problems. Therefore, there is growing interest in discovering and 

developing new, improved fungicides based on natural products as well as introducing alternative 

biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol 

agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to 

produce various bioactive compounds. This review provides insight into the biocontrol potential 

of various Streptomyces spp. Studies clearly show that Streptomyces spp. have the potential to be used as 

highly effective biocontrol agents against many fungal and bacterial disease.   
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Introduction 
Streptomyces is the largest genus of the phylum Actinobacteria which consists of a group of 

Gram-positive, aerobic, non-motile, catalase positive, and non-acid-fast bacteria with a 

filamentous form that resembles fungi (Flardh and Buttner, 2009; Hasani et al., 2014) [14, 38]. 

Currently, over 700 species of Streptomyces have been identified and these bacteria have 

relatively large genomes of approximately 8–9 Mbp in size with a high GC content of more 

than 70% (Wu et al., 2005; Hasani et al., 2014; Ser et al., 2015c) [114, 38, 103]. The predominant 

character of Streptomyces morphology is formation of thin strands of mycelium with spiral 

spore chains. Streptomycetes have a life cycle unique among bacteria. It consists of two phases 

vegetative and the sporogenous. When these organisms are grown on an adequate solid 

medium, the spores germinate and grow. Later, the germ tube grows and forms a mat of 

hyphae firmly attached to the solid surface. This represents the substrate or vegetative 

mycelium. Subsequently, when the nutritional conditions start to be adverse for the vegetative 

growth, specialized aerial hyphae arise on the top of the mycelium; this mycelium forms 

chains of three to many spores called sporophores at maturity. They are formed by formation 

of cross-walls in the multinucleate aerial filaments followed by separation of individual cells. 

When grown in medium, streptomycete colonies form a discrete and lichenoid, leathery or 

butyrous colonies. Initially, the colonies are relatively smooth surfaced, but later they develop 

a weft of aerial mycelium that may appear floccose, granular, powdery, or velvety. 

Streptomycetes produce a wide variety of pigments responsible for the color of the vegetative 

and aerial mycelia. Colored diffusible pigments may also be formed. The vegetative mycelium 

is constituted by thin hyphae (0.5-2 μm in diameter) that often lack cross-walls and are 

extensively branched. Depending on the temperature, the pH and the age of culture the 

substrate mycelium can show numerous colors and soluble pigments: blue, dark green, red, 

and violet. 

Streptomycetes, which are abundant in soil, are believed to play a major role in composting the 

organic matter. The members of Streptomyces are well-known for their ability to produce a 

variety of bioactive compounds. Streptomyces strains also have important applications in the 

agricultural field through their biological control potential against phytopathogens, particularly 

phytopathogenic fungi. The production of most antibiotics is species specific, and these 

secondary metabolites are important for Streptomyces species in order to compete with other 

microorganisms that come in contact. 

 

Streptomycetes in soil and their relationship with plant roots  

The advantages of Streptomyces spp. include their ability to colonize plant root surfaces, 
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survive in various types of soil and also produce spores which 

allow them to survive longer and in various extreme 

conditions (Gonzalez-Franco and Robles-Hernandez, 

2009; Ningthoujam et al., 2009) [29]. 

Streptomycetes are found to colonize rhizosphere, enter the 

root tissues and establish endophytic lifestyle with plants (Cao 

et al., 2004) [118]. Actinomycetes can occur in the plant 

rhizosphere soil and exercise an antagonistic and competitive 

effect on the microbial communities. They have the ability to 

produce active compounds, such as antifungal and 

antibacterial antibiotics or plant growth regulators (PGRs), 

that have been developed for agricultural uses (Suzuki et al. 

2000) [100]. They have also been used as commercially 

formulated biocontrol agents of plant diseases such as 

Streptomyces griseoviridis cells used to protect crops against 

infections by Fusarium spp. and Alternaria spp. Due to 

production of a wide number of antifungal compounds and 

chitinase (Mahadevan and Crawford, 1997; Taechowisan et 

al., 2003a) [119, 101], the ability of some streptomycete strains to 

inhibit plant pathogens and therefore act as promising 

biological control agents. Some strains were screened and 

characterized for their activity against soil-borne pathogens. 

The mode action of Streptomycetes as a potential biocontrol 

agent is discussed below 

 

Antibiosis 

Streptomycetes are the largest antibiotics-producing genus in 

the microbial world. Streptomyces species exhibit biocontrol 

activity that correlates with their production of antibiotics 

(Rothrock & Gottlieb 1984; Hwang et al., 1994; Raatikainen 

et al., 1994) [84, 40, 74]. Streptothricin, actinomycin and 

streptomycin were the first discovered antibiotics produced by 

Streptomyces spp. (Waksman, 1943; Waksman and Tishler, 

1942) [111]. From 1950s to 1970s started the screening of 

streptomycetes for antibiotics production and a wide number 

of compounds were found and characterized, example - 

novobiocin, vancomycin, tetracycline, nystatin (Hopwood, 

2007) [39]. They have antibacterial and antifungal activities 

(Hopwood, 2007) [39]. Streptomyces violaceusniger YCED9 

was an isolate from a British soil, exhibited biocontrol activity 

against a variety of plant pathogenic fungi. The strain 

produces three antifungal antibiotics viz., nigericin, 

geldanamycin and a complex of polyenes that includes 

guanidylfungin a (Trejo- Estrada et al., 1998) [106,]. Anti-

Fusarium Activity (AFA) (Trejo-Estrada et al., 1998) [106]. 

Growth and pathogenesis of R. solani and S. homeocarpa 

were reduced by the presence of the nigericin produced by 

YCED9.  

The antifungal potential of extracellular metabolites from 

Streptomyces against some fungi was previously reported 

(Rothrock and Gottlieb, 1984; El-Abyad et al., 1993; 

Chamberlain and Crawford, 1999; Joo, 2005; Fguira et al., 

2005) [84, 19, 26]. It has been reported that Streptomyces 

violaceusniger G10 showed a strong antagonism toward F. 

oxysporum f.sp. cubense by producing extracellular antifungal 

metabolites. Validamycin a (VMA) is an aminoglucoside 

antibiotic produced by Streptomyces hygroscopicus var. 

limoneus. VMA effectively controls rice sheath blight caused 

by Rhizoctonia solani (Wakae and Matsuura, 1975) [110]. 

The antibiotic Oligomycin A was first isolated 

from Streptomyces diastatochromogenes and was found to be 

active against several other phytopathogenic fungi in such 

as Magnoporthe oryzae, Botrytis cinerea, Cladosporium 

cucumerinum, Colletotrichum lagenarium, Phytophthora 

capsici, Alternaria alternata, and Aspergillus niger (Smith et 

al., 1954; Kim et al., 1999; Yang et al., 2010) [99, 46, 117]. 

Oligomycin A’s ability to control the development of rice 

blast was evaluated in the greenhouse and the results showed 

that rice plants treated with Oligomycin A (50 μg/mL) had 

reduced lesions. When the concentration of Oligomycin A 

was increased up to 500 μg/mL, the rice plants did not show 

any rice blast disease symptoms (Kim et al., 1999) [46]. 

Rapamycin also known as Sirolimus was initially isolated 

from Streptomyces hygroscopicus (Sehgal et al., 1975; 

Sehgal, 1998) [88, 89]. Rapamycin and Pyrroles are potent 

antifungal agent found to be effective against many fungus 

and are also commonly found in various Streptomyces species 

(Robertson and Stevens, 2014; Ser et al., 2015b, 2016b,c; Tan 

et al., 2015; Awla et al., 2016) [77, 90, 91, 4].  

An antifungal antibiotic produced by Streptomyces 

koyangensis inhibited the growth of Pyricularia oryzae and 

Rhizoctonia solani. Under greenhouse conditions, the antibi-

otic suppressed blast disease in rice plants (Lee et al., 2005) 
[56]. VOCs produced by Streptomyces philanthi inhibited 

mycelial growth of rice pathogenic fungi such as Rhizoctonia 

solani, Pyricularia grisea, Bipolaris oryzae and Fusarium 

fujikuroi (Boukaew et al., 2014) [6]. Culture filtrates of UCR3-

16 showed significant inhibition against the fungal pathogens. 

The antifungal compounds present in the culture filtrates must 

be heat labile as antagonistic activity was lost when filtrates 

were sterilized. Prapagdee et al. (2008) [72] 

 

Cell wall-hydrolysing enzymes 

It has been reported that antifungal mechanism of 

Streptomyces has been attributed to the action of hydrolytic 

enzymes such as chitinase, β-1, 3-glucanase, chitosanase, and 

protease (De Boer et al., 1998; Wang et al., 1999; Wang et 

al., 2002; Chang et al., 2007) [17, 112, 113]. Streptomyces 

violaceusniger YCED9 produced the extracellular fungal cell 

wall-hydrolysing enzymes chitinase and β-1,3-glucanase 

(Trejo- Estrada et al., 1998) [106]. The antagonistic activity of 

Streptomyces to fungal pathogens was usually related to the 

production of antifungal compounds (Trejo-Estrada et al., 

1998; Ouhdouch et al., 2001; Fguira et al., 2005; 

Taechowisan et al., 2005) [106, 26] and extracellular hydrolytic 

enzymes (Valois, 1996; Trejo-Estrada et al., 1998, 

Mahadevan and Crawford,1999; Mukherjee and Sen 2006) 
[64]. Chitinase and β -1,3-glucanase are considered to be 

important hydrolytic enzymes in the lysis of fungal cell walls 

of Fusarium oxysporum, Sclerotinia minor, and Sclerotium 

rolfsii (Singh et al., 1999; El-Tarabily et al.,2000) [98]. The 

production of chitinase and β-1,3 glucanase enzymes by 

Streptomyces was related to fungal growth inhibition and the 

biological control of fungal pathogens was possible because 

of the ability of Streptomyces to degrade fungal cell walls 

(Valois, 1996; Mahadevan and Crawford,1997;El-Tarabily et 

al.,2000; Mukherjee and Sen 2006) [64]. 

Hyperparasitism may occur due to the release of extracellular 

lytic enzymes such as chitinases and glucanases from the 

biocontrol agent (Gonzalez-Franco and Robles-Hernandez, 

2009; Palaniyandi et al., 2013) [29]. It has also been shown 

that Streptomyces spp. are capable of producing chitinases 

and glucanases which play important roles in destruction of 

fungal cell walls (Mahadevan and Crawford, 1997; El-

Tarabily et al., 2000; Gonzalez-Franco and Robles-

Hernandez, 2009) [29]. 

UCR3-16 produced major fungal cell wall degrading enzymes 

such as chitinase, and glucanase, lipase and pro-tease. 
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Chitinase producing Streptomyces vinaceusdrappus inhibited 

mycelial growth of rice fungal pathogens, Curvularia oryzae, 

Pyricularia oryzae, Bipolaris oryzae and Fusarium 

oxysporum (Ningthoujam et al., 2009) [66]. Chitinase and β1,3-

glucanase produced by Streptomyces sp. 385 lysed cell walls 

of Fusarium oxysporum (Singh et al.,1999) [98]. 

 

Plant growth promotion by growth regulators  

Bacteria of the genus Streptomyces are common inhabitants of 

rhizosphere and act as beneficial microorganisms for plant 

growth and development (Gopalakrishnan et al., 2014; Tokala 

et al., 2002a) [32, 104]. In addition to their ability to inhibit plant 

pathogens, some actinomycetes are also known to form close 

associations with plants, colonize their internal tissues without 

causing disease symptoms, and promote their growth (Kunoh 

2002) [50]. Streptomycetes have been little investigated as 

Plant Growth Promoting Bacteria (PGPB). Some works were 

carried during the 1980 to 1990 at the University of Milan and 

only recently, the interest on streptomycete beneficial effects 

on plant growth is gaining increased attention; their positive 

effects on root nodulation in Pea plants were observed 

(Tokala et al., 2002b) [104], as well as the increase of fresh and 

dry weight and length of roots and shoots of bean. 

The main modes of action involved in the PGP activity are the 

synthesis of the hormone indole-3-acetic acid (IAA) and the 

improvement of iron and phosphate availability for the plant 

in the rhizosphere. Here, a collection of 200 endophytic 

streptomycetes was analyzed for these PGP traits. IAA was 

produced by almost all isolates, as commonly reported for 

bacteria, which inhabit the rhizosphere (Patten and Glick, 

1996). Streptomyces have been reported for the PGP activity. 

Especially, they are known to synthesize the hormone auxin 

and improve the availability of iron (Imbert et al., 1995) and 

phosphate in the rhizosphere (Sousa et al., 2008). 

Several studies have reported plant growth promoting 

activities of endophytic actinomycetes on tomato seedlings 

(Coa et al. 2005; El-Tarabily et al. 2008) [14, 23]. The 

enhancement of plant growth by the strains Streptomyces sp. 

CA-2 and AA-2 could contribute to the protection of the plant 

against pathogenic fungi as previously reported with other 

Streptomyces spp. by Xiao et al. (2002) [115]. The growth 

promoting effect of the two isolates of actino-mycetes seemed 

to be correlated with root enhancement and shoot production. 

In the same cases, where the strains were strictly endo-phytic, 

such effects were generally attributed to PGRs production 

(Shi et al. 2009). El-Tarabily et al. (2008) [31] reported that the 

involvement of PGRs could not only help the seedlings to 

grow better but could also help the host to compensate for 

tissue damage caused by the pathogen agent. Several 

endophytic bacteria have been reported to produce PGRs in 

vitro and to promote the growth of seedlings (Kuklinsky-

Sobral et al. 2004; Goudjal et al. 2013) [48, 34]. 

Actinomycetes have been reported to play an important role 

in the plant rhizosphere by secreting a wide range of 

antimicrobial products thus preventing growth of common 

root pathogens. Actinomycetes, especially Streptomyces, are 

prolific producers of secondary metabolites, and are being 

used as BCAs to control soil-borne and seed borne diseases of 

plants (Rosales and Mew, 1997) [78]. Antagonistic activity 

may be due to production of antifungal metabolites volatile 

compounds (Khamna et al., 2010; Boukaew et al., 2014) [7, 45] 

and cell wall degrading enzymes such as chitinase, glucanase. 

Actinomycetes, especially Streptomyces spp. accounting for 

an abundant percentage of the soil microflora, are particularly 

effective colonizers of plant root systems and are able to 

endure unfavourable growth conditions by forming spores 

(Alexander, 1997) [1]. Despite their preliminary track record 

as BCAs and plant growth promoting (PGP) activities, 

Streptomyces spp. have been scarcely reported in the 

literature. Some reports exist for their ability to solubilize 

phosphate, and production of indole acetic acid (IAA), 

siderophores, 1-aminocyclopropane-1-carboxylic acid (ACC) 

deaminase and cell wall degrading enzymes such as chitinase, 

glucanase and protease (Singh et al., 1999; Gopalakrishnan et 

al., 2011; Jog et al., 2012; Sadeghi et al., 2012; Passari et al., 

2015; Qin et al., 2015) [98, 85, 70]. 

 

Siderophores  

It is well known that microbial siderophores play an important 

role in plant growth as demonstrated by the effect on root and 

shoot biomass and length of rice plants, as consequence of the 

inoculation of a siderophore-producing streptomycete, the 

growth promoting effect is widely attributed to factors, such 

as siderophore production and phosphate solubilization 

(Hamdali et al. 2008) [37] and nitrogen fixation (Ribbe et al. 

1997) [76]. Streptomycetes also showed promising PGP 

activity because of the frequent production of indole-3-acetic 

acid (IAA) and siderophores, although they only rarely 

solubilized phosphate. These traits are very common among 

the microorganisms that inhabit the rhizosphere and in some 

works the PGP activity showed in vitro was confirmed in 

planta. For instance, rice plants inoculated with siderophore-

producing Streptomyces sp. enhanced plant growth and 

significantly increased root and shoot biomass. 

 

Volatile Substances 

Streptomyces are able to produce useful volatile substances 

with molecular weight of <300 Da, low polarity, and high 

vapor [Pichersky et al., 2006]. Bacterial volatile substances 

have been successfully recognized by gas chromatography 

comb with pressure mass spectrometry (GC-MS). More than 

120 various substances have been recognized in 

actinomycetes including Alkanes, Alkenes, Alkens, Alcohols, 

Ketones, Aldehydes, Acids and Esters. Volatile substances 

derived from Streptomyces sp. and other species of 

actinomycetes prevent mycelium growth and inhibit spore 

germination of different fungi (Kai et al., 2008, Anitha et al., 

2010). Cyclohexanol, decanol, 2-ethyl-1-hexanol, nonanol, 

benzothiazole dimethyl trisulfide are important compounds 

that inhibit spore germination and mycelium growth of 

Sclerotinia sclerotiorum (Fernandoa et al., 2005) [25] Volatile 

substances of Streptomyces griseus reduces spore germination 

of Gleosporium aridum which subsequently lead to faster 

formation of sclerotinia of R.solani and Sclerotinia 

cepivorum. Volatile substances of Streptomyces platensis also 

reduced the growth of R.solani, Sclerotinia sclerotiorum and 

Botrytis cinerea and reduced the disease level of leaf blight, 

seedling blight in rice, leaf blight in oilseed rape, and fruit rot 

in strawberry (McCain., 1966, Wan et al., 2008) [62, 37]. In 

another research, effects of volatile substances of 

Streptomyces globisporus were examined on spore 

germinating and mycelium growth Penicillium italicum and 

infected fruits. Among 41 volatile substances of this 

bacterium, Dimethyl disulfide and Dimethyl trisulfide have 

high inhibiting effects against fungus (Li et al., 2010) [117]. 

Volatile substances of various species of Streptomyces, have 

high potential in biological control. 
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Streptomyces in biological control 

Biological control is a nonchemical measure that has been 

reported in several cases to be as effective as chemical control 

(Dik and Elad, 1999; Elad and Zimand, 1993) [20, 21]. The 

excessive use of chemical fungicides in agriculture has led to 

deteriorating human health, environmental pollution and 

development of pathogen resistance to fungicide. Microbial 

antagonists are widely used for the biocontrol of fungal plant 

diseases due to lack of induction of pathogen resistance and 

reduction of chemical fungicide residues in soil. Mukherjee et 

al., (1995) has reported Streptomyces spp. are well known 

biocontrol agents that inhibit several plant pathogenic fungi 

(El-Tarabily et al., 2000; Errakhi et al., 2007; Joo, 2005; Xiao 

et al., 2002) [115, 24, 43]. The role of actinomycetes in the 

biocontrol of soil-borne plant pathogens has been 

demonstrated against various pathogens such as Fusarium 

spp. (Sabaou and Bounaga 1987; Gopalakrishnan et al. 2011) 
[82], Phytophthora spp. (Shahidi Bonjar et al. 2006) [84], 

Pythium spp.(Hamdali et al. 2008) [36], Rhizoctonia spp. 

(Sadeghi et al. 2006) [84], and Verticillium spp. (Meschke and 

Schrempf 2010) [63]. The ability of bacteria, especially 

actinomycetes, to parasitize and degrade the spores of fungal 

plant pathogen was well established (El-Tarabily et al., 1997). 

Biocontrol of Phytophthora cinnamomi and root rot of 

Banksia grandis Willd. was obtained using a cellulase-

producing isolate of Micromonospora carbonacea (El-

Tarabily et al., 1996) and control of Phytophthora fragariae 

var. rubi causing raspberry root rot was suppressed by the 

application of actinomycete isolates that were selected for the 

production of β-1,3, β -1,4 and β -1,6 glucanases (Valois et 

al., 1996). 

The genus Streptomyces was well known as antifungal 

biocontrol agents that inhibit several plant pathogenic fungi 

(El-Tarabily et al., 2000; Xiao et al., 2002; Joo, 2005; Errakhi 

et al., 2007) [115, 43]. Streptomyces was important soil 

microorganism and well known producers of antibiotics and 

extracellular enzymes (Crawford et al., 1993) [16]. 

Streptomyces violaceusniger SRA14 had a strong antagonistic 

activity to Colletotrichum gloeosporioides. Analysis of the 

16S rDNA gene sequences showed that the SRA14 was 

closely related to Streptomyces hygroscopicus (98 per cent 

similarity). The non-pathogenic strains of Streptomyces was 

applied to control scab of potato (Solanum tuberosum L.) 

caused by Streptomyces scabies (Ryan and Kinkel, 1997; 

Neeno-Eckwall and Schottel, 1999) damping-off of tomato 

(Sabaratnam and Traquair, 2002) and Sclerotinia basal drop. 

Mycoparasitism involves the production of extracellular 

enzymes that hydrolyse the fungal cell walls, whereas 

antibiosis involves the production of secondary metabolites in 

the rhizosphere which inhibits the growth and differentiation 

of fungal pathogens. Members of the genus Streptomyces 

strains YCED9 and WYEC108 were antifungal biocontrol 

agents (Crawford et al., 1993; Crawford 1996) [15, 16]. You et 

al., 1996 have observed increases in streptomycetes 

population in soil after enrichment with organic matter. This 

might explain the enhanced antagonism or suppressiveness of 

soil sometimes seen after organic enrichment (Malajczuk 

1983; van Driesche and Bellows 1996). The Streptomyces 

strains have been shown to control in vivo lettuce damping off 

caused by Pythium ultimum (Crawford et al., 1993) [16], which 

might be explained by the fact that the lettuce was grown in a 

rich potting soil. Streptomyces were also studied against 

Pythium seed and root rot, Phytophthora root rot (Xiao et al., 

2002) [115], Rhizoctonia; El-Tarabily et al., 2000) [21]. Several 

studies have reported the use of actinomycete strains for 

biocontrol of Rhizoctonia solani damping-off (Coa et al.2004; 

Chung et al. 2005; Sadeghi et al. 2006; Patil et al. 2010) [84]. 

In addition, commercial products to control crop damping-off, 

such as Mycostop (Streptomyces griseovirid is strain K61) 

and Actinovate (Streptomyces lydicus strain WYEC108), have 

been registered. 

 

Conclusion 

This review explores an implementation of antagonistic 

actinomycetes as plant growth promoters and biocontrol 

agents in combined way, which make them competitive 

compared to other commercial biocontrol agents. They are 

excellent candidates as biocontrol agents for the biological 

control of devastating plant disease. In order to 

establish Streptomyces as biocontrol agents, more field 

experiments should be conducted to determine their control 

efficacy under different environmental conditions. 

Additionally, more work is needed to optimize isolation, 

formulation and application methods of Streptomyces in order 

to fully maximize their potential as effective biocontrol 

agents. As actinomycetes especially Streptomyces spp. 

produce spores that help dissemination and confer resistance 

to many adverse conditions, they can be promising agents for 

development as novel biofertil-izers and biocontrol agents. 
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