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Sublethal concentrations of Beauveria bassiana 

affect biochemical aspects of Culex pipiens larvae  

 
Shaymaa Hussein Mahmoud 

 
Abstract 
The biochemical effects of entomopathogenic fungi, Beauveria bassiana were studied in larvae of Culex 

pipiens in laboratory. Results revealed that the mean total glucose, protein and lipid contents decreased 

after treatment of second instar larvae with LC25, LC50 and LC90 compared with control larvae 96 h post 

treatment. The decreasing effect was dose dependent. A noticeable decrease in the activity of 

acetylcholine esterase, alpha esterase and beta esterase compared with control was recorded. 

Additionally, the activity of Glutathione- S-transferase was reduced after treatment with LC25, LC50 and 

LC90 of B. bassiana. Similarly, data showed that B. bassiana treated larvae induced a significant decrease 

of peroxidase activity and ascorbic acid compared to that of control larvae.  

Changes in electrophoretic protein pattern of untreated and treated second instar larvae of C. pipiens were 

analyzed after 96 hrs of treatment using (SDS-PAGE) and significant changes in the total protein profile 

of C. pipiens larvae were observed.   

 

Keywords: Beauveria bassiana, Culex pipiens, acetylcholine esterase, alpha esterase, beta esterase, 

glutathione- S-transferase, peroxidase and SDS-PAGE 

 

Introduction 

Mosquitos are medically important insects closely related to the life of human beings. The 

harm of mosquitoes to human beings is not only because of the harassment and blood feeding 

habits, but also due to their transmission of various diseases, such as malaria (Wood et al 

2010) [51], filariasis (Pedersen et al 2009) [37], yellow fever (Salvemini et al 2011) [39], dengue 

(Wu et al 2010) [52], and Japanese encephalitis (Dutta et al 2011) [16]. Enormous efforts have 

been required to control these diseases including environmental management, the use of 

insecticides and repellents, vaccine research and biological mosquito control (Itokawa et al 

2011) [26]. Insecticides play a central role in controlling mosquitoes, but recently, more serious 

insecticide resistance has appeared in mosquitoes against every chemical class of insecticides, 

such as organochlorine, carbamate, organophosphate, pyrethroid and insect growth regulators 

(Wang and Pantopoulos 2011) [50]. Biological control is confident in pest management using 

different predators, parasites and pathogens. Among different micropathogens, 

entomopathogenic fungi are considered unique due to their wide host range, way of their 

pathogenicity and specificity to juice sucking pests such as mosquitoes, aphids and chewing 

pests (DeFaria and Wraight, 2007) [12]. Entomopathogenic fungi can be used for pest control 

without affecting other non-target organisms (Khetan, 2001) [29]. They are currently being used 

for the control of several insect pests as alternatives or supplements to chemical insecticides 

(Fan et al., 2007) [19, 53]. The genus Beauveria contains at least 49 species of which 

approximately 22 are considered pathogenic (Kirk, 2003) [31]. Beauveria bassiana, a white 

muscardine fungus, is the most commonly used fungi in this genus known as the causative 

agent of a white (later yellowish or occasionally reddish) muscardine disease in domestic 

silkworms (Furlong & Pell, 2005; Zimmermann, 2007) [21, 54].  

B. bassiana fungus grows naturally in soils throughout the world and acts as a pathogen on 

various insect species (Sandhu and Vikrant 2004; Jain et al., 2008) [40, 27]. An interesting 

feature of Beauveria sp. is the high host specificity of many isolates. Hosts of agricultural and 

forest significance include the Colorado potato beetle, the codling moth, and several genera of 

termites, American bollworm, Helicoverpa armigera (Thakur and Sandhu 2010) [47]. B. 

bassiana can easily be isolated from insect cadavers or soil in forested areas (Beilharz et al., 

1982) [6], as well as by baiting soil with insects. In laboratory it can be cultured on simple 

media (Roberts & Hajek, 1992; Goettel & Inglis, 1997) [38, 24].  
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B. bassiana is considered one of the most effective 

entomopathogenic fungi due to their cosmopolitan 

distribution (Bidochka et al., 1998) [7], ability to infect any 

life stage of its host, wider host range than the other 

Deuteromycetes (Roberts and Hajek, 1992) [38] and can infect 

certain plant tissues (Bing and Lewis, 1992) [8].  

There are few studies examined the biochemical effects of B. 

bassiana against mosquitoes. Therefore, the objective of this 

study was to investigate the biochemical effects of B. 

bassiana after treatment of second instar larvae of C. pipiens 

with sub lethal concentrations under laboratory conditions. 

The present investigation is an effort to elucidate mosquito 

physiological reactions following B. bassiana treatment. 

 

Materials and methods 

Insect culture and bioassays 

C. pipiens used in the present study was obtained from 

susceptible reared strain of Research Institute of Madical 

Entomology, Dokki, Egypt. The colony was maintained under 

laboratory conditions of 27±2 0C and 75± 5% R.H. according 

to El-bokl and Moawad (1996) [17]. Second instar larvae were 

collected for bioassay tests. Different concentrations of B. 

bassiana were prepared by dissolving the powder in water. In 

each test, larvae were put in a plastic cup with100 ml tap 

water and then treated with B. bassiana. Each test was 

replicated three times. Control experiments were performed 

using water only. The percentage of mortality (Data not 

published here) and resultant LC25, LC50 and LC90 were 

calculated according to Finney (1971) [20], using "Ldp line" 

software by (Bakr, 2000) [5]. After 96 hours of treatment, 

larvae were separated and used to subsequent analysis.  
 

Biochemical assays 

Preparation of insects for biochemical assays 

Insects were homogenized in distilled water (50 mg /1 ml) in 

a chilled glass Teflon tissue homogenizer (ST – 2 Mechanic-

Preczyina, Poland) as described by Amin (1998) [3]. 

Homogenates were centrifuged at 8000 r.p.m. for 15 min at 2 

ºC in a refrigerated centrifuge. The deposits were discarded 

and supernatants were stored at -20 ºC till use for biochemical 

assays. Double beam ultraviolet/visible spectrophotometer 

(spectronic 1201, Milton Roy Co., USA) was used to measure 

absorbance of colored substances or metabolic compounds.  
 

Quantitative determination of total glucose, proteins and 

lipids 

Total proteins were determined according to Bradford (I976) 

using Coomassie Brilliant blue G-250(sigma chemical co.) as 

protein reagent. Total glucose was extracted and prepared for 

assay according to Crompton and Birt (1967) [11]. Total lipids 

were estimated by the method of Knight et al. (1972) [30] 

using phosphovanillin reagent.  
 

Quantitative determination of acetylcholinesterase and 

non-specific esterases 

 Acetylcholinesterase (AchE) activity was measured 

according to Simpson et al. (1964) using acetylcholine 

bromide (AchBr) as substrate. Alpha (α) esterases and beta 

(β) esterases were determined according to Van Asperen 

(1962) using α-naphthyl acetate or β-naphthyl acetate as 

substrates (respectively,).  
 

Quantitative determination of Glutathione S-Transferase 

(GST), peroxidase and ascorbic acid 

Glutathione S-transferase (GST) was detected as described by 

the method of Habig et al. (I974) [25]. Peroxidase activity was 

determined according to Vetter et al. (I958) [49]. Ascorbic acid 

method (A.O.A.C., 1975) [4] is based on measurement of the 

extent to which a 2, 6-dichlorophenol-indophenol dye solution 

is decolorized by the presence of ascorbic acid.  
 

Protein electrophoresis by SDS-PAGE 

Preparation of the gels followed the sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) according to 

the method described by Laemmli (1970) [33]. The gel was 

prepared from monomer solution of 30% acrylamide and 

0.8% N-N-bis-methylene-acrylamide. The denatured gels 

prepared as 12 % of separating gel in 1.5 M Tris-HCl buffers 

(pH 8.8) and 3 % of stacking gel in 0.5 M Tris-HCl buffer 

(pH 6.8).  

 

Statistical analysis 

All experiments contained 3 replicates and the results were 

analyzed by one way analysis of variance (ANOVA) using 

SPSS statistical software, Version 21.  

 

Results 

The effect of sub-lethal concentrations of B. bassiana on 

treated second instar larvae of C. pipiens on total glucose, 

protein and lipid content were recorded in Table (1). Total 

glucose contents were 11.17, 11.57 and 11.77 mg/gm in 

larvae of C. pipiens treated with LC25, LC50 and LC90 B. 

bassiana, respectively as compared with 12.27 mg/gm in 

control larvae revealing a non-significant decrease. The total 

protein contents were 34.4, 25.77 25.1 mg/gm in larvae of C. 

pipiens treated with LC25, LC50 and LC90 B. bassiana, 

respectively as compared with 36.4 mg/gm in control larvae. 

Similarly, total lipid contents were 9.34, 8.38 and 6.1 mg/gm 

in larvae of C. pipiens treated with LC25, LC50 and LC90 B. 

bassiana, respectively as compared with 14.34 mg/gm in 

control larvae showing significant decrease after treatment 

with sub-lethal concentrations of B. bassiana. The decreasing 

effect in the three main body metabolites was dose- 

dependent. 

The impacts of sub-lethal concentrations of B. bassiana on the 

activity of acetylcholine esterase, alpha esterase and beta 

esterase were demonstrated in table (2). The activities of 

acetylcholine were 4.87, 4.83 and 2.98 (ug AchBr/min/mg 

protein) in larvae of C. pipiens treated with LC25, LC50 and 

LC90 B. bassiana, respectively, as compared with 5.28 (ug 

AchBr/min/mg protein) in control larvae. Acetylcholine 

esterase activity significantly decreased after treatment with 

sub-lethal concentrations of B. bassiana. Alpha esterase 

activity insignificantly decreased after treatment with sub-

lethal concentrations of B. bassiana and the activity was 

10.60, 10.94 and 10.98 ((ug α- naphthol/min/mg protein)) in 

larvae of C. pipiens treated with LC25, LC50 and LC90 B. 

bassiana, respectively as compared with 16.33 ((ug α- 

naphthol/min/mg protein)) in control larvae. The activities of 

beta esterase were 20.50, 15.79 and 14.51 ((ug β - 

naphthol/min/mg protein)) in larvae of C. pipiens treated with 

LC25, LC50 and LC90 B. bassiana, respectively as compared 

with 27.23 (ug β - naphthol/min/mg protein)) in control larvae 

showing significant decrease after treatment with sub-lethal 

concentrations of B. bassiana.  

The activity of glutathione- S-transferase, peroxidase and 

ascorbic acid was recorded in table (3). The activities of 

Glutathione- S-transferase were 6265, 5717 and 3521 (n-mol-

sub. conjugated/min/mg protein) in larvae of C. pipiens 
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treated with LC25, LC50 and LC90 B. bassiana, respectively as 

compared with 6745 (n-mol-sub. conjugated/min/mg protein) 

in control larvae. Glutathione- S-transferase activity 

significantly decreased after treatment with sub-lethal 

concentrations of B. bassiana. The activity of peroxidase was 

264.67, 252 and 245.67(∆O.D. x103/min/mg protein) in larvae 

of C. pipiens treated with LC25, LC50 and LC90 B. bassiana, 

respectively as compared with 276.67 (∆O.D. x103/min/mg 

protein) in control larvae (Table 3). Peroxidase activity 

significantly decreased after treatment with sub-lethal 

concentrations of B. bassiana. The activity of ascorbic acid 

was 9.65, 9.47 and 8.67(ug Ascorbic acid/g.b.wt.) in larvae of 

C. pipiens treated with LC25, LC50 and LC90 B. bassiana, 

respectively as compared with 10.07 (ug Ascorbic 

acid/g.b.wt.) in control larvae (Table 3). Ascorbic activity 

significantly decreased after treatment with sub-lethal 

concentrations of B. bassiana. 

 

SDS- PAGE results 

Changes in electrophoretic protein pattern of untreated and 

treated second instar larvae of C. pipiens were analyzed after 

96 hrs of treatment using (SDS-PAGE). Electrophoretic 

protein patterns are shown in Fig. (1). The SDS protein 

pattern of larval proteins showed different numbers of protein 

bands according to their molecular weights and revealed 

differences between untreated and treated larvae (Table 4). 

The control larvae were separated into 20 protein bands with 

molecular weight ranged from 275.50 to 14.18 kDa. The 

number of bands of larvae treated with LC25, LC50 and LC90 

of B. bassiana were 14, 11 and 10 bands, respectively 

compared with 20 bands in control larvae. The molecular 

weight of bands in larvae treated with LC25 of B. bassiana 

was 211.05, 188.37, 136.61, 111.61, 97.94, 88.92, 76.80, 

69.40, 55.60, 43.64, 39.73, 33.89, 28.81 and 25.40 kDa. The 

molecular weight of bands in larvae treated with LC50 of B. 

bassiana was 211.05, 136.61, 111.61, 97.94, 76.80, 55.60, 

43.64, 39.73, 33.89, 28.81 and 25.40 kDa. The molecular 

weight of bands in larvae treated with LC90 of B. bassiana 

was 211.05, 136.61, 111.61, 97.94, 76.80, 55.60, 43.64, 

33.89, 28.81 and 25.40 kDa. There were 9 common bands 

between control and treated larvae with molecular weight 

approximately 211.05, 136.61, 111.61, 97.94, 76.80, 33.89, 

43.64, 28.81 and 25.40 kDa. There was 1 common band 

between control and larvae treated with LC25 of B. bassiana 

with molecular weight 88.92. There were 8 characteristic 

bands for the control larvae with molecular weight 275.50, 

254, 226.19, 61.21, 51.72, 46.90, 22.35 and 14.18 kDa. There 

was one characteristic band for larvae treated with LC25 and 

LC50 of B. bassiana with molecular weight 69.40 and 39.73 

kDa, respectively. Treatment of larvae with LC25 of B. 

bassiana caused the disappearance of 9 bands and appearance 

of three unique bands while treatment LC50 of B. bassiana 

caused the disappearance of 10 bands and appearance of one 

unique band. Additionally, treatment of larvae with LC90 of B. 

bassiana caused the disappearance of 10 bands with no 

appearance of any new bands indicating a disturbance in the 

immune system and proteins. The obtained results indicated 

that the application of entomopathogenic fungi B. bassiana as 

larvicidal agents against mosquito larvae caused significant 

changes in the total protein profile of C. pipiens larvae.  

 

Discussion 

As indicated from the obtained results, the protein contents of 

larvae treated with LC25, LC50 and LC90 of B. bassiana were 

significantly reduced compared to control larvae. The 

obtained result is in agreement with Abdou et al (2017) [1] 

who studied the biochemical effects of two entomopathogenic 

fungi, B. bassiana and Metarhizium anisopliae, in the 

3rd instar larvae of C. pipiens in laboratory and observed a 

significant reduction in the total proteins of the treated larvae 

compared to control. In accordance with this study, Sree and 

Joshi (2015) [45] who indicated that, inoculation of fungal 

pathogen B. bassiana in silkworm larvae resulted in a 

significant reduction in protein content of haemolymph. 

Sahayaraj and Borgio (2010) [41] found that B. bassiana and 

M. anisopliae reduced total body protein content in 

Dysdercus cingulatus. The reduction in protein level resulted 

from damage of protein molecules and alteration of certain 

amino acid side chains, which leads to alteration in its 

properties to the point where it can no longer serve its usual 

purpose (Spikes and Macknight, 1970) [44]. Callaham et al., 

(1977) [10] suggested that this decrease might be due to 

accumulative energy stress on the organism. 

Detoxification enzymes in insects such as acetylcholine 

esterase and glutathione- S-transferase can effectively 

metabolize the exogenous toxic compounds (Zhang et al. 

2001) [26]. GST conjugates endogenous glutathione with toxic 

pro-electron material to form a nucleophilic center that 

protects substances such as proteins and nucleic acids and acts 

as a means of excreting toxic substances. Also, they play 

important roles in maintaining the normal physiological 

activities in the body (Kontogiannatos et al. 2011) [32]. GST 

serves a variety of physiological and metabolic functions (Su 

et al. 2007) [46]. GST is able to catalyze harmful or polar 

compounds with glutathione and can discharge various 

potential toxic compounds and some carcinogens from the 

body in a non-enzymatic pattern (Ding 2007) [13]. In this 

study, the activity of GSTwas determined in C. pipiens larvae 

96 h following treatment with B. bassiana. The decreased 

GST activity could be due to the damage caused by the fungal 

toxins. In accordance with these results, Ding et al. (2005) [14] 

studied the effects of 4 strains of 2 species of Beauveria 

against larvae of Xylotrechus rusticus and reported that the 

activity of GST (first increased after treatment and then 

slowly decreased. The enzyme activity peaked at 72 to 96 h 

post-infection. 

Acetylcholine esterase is an important insect hydrolase for 

maintaining normal functions of the nervous system through 

rapid hydrolysis of the neurotransmitter acetylcholine into 

choline and acetic acid to stop nerve impulse transmission. 

Organophosphate and carbamate pesticides function primarily 

by binding to AchE and inhibiting its catalytic activity (Niu et 

al. 2005; Machado et al. 2012) [36, 35]. When AchE is 

suppressed, acetylcholine cannot be decomposed in a timely 

manner and is accumulated in the synaptic cleft, resulting in 

neural hyperactivity, convulsions, poisoning, and death. In the 

present results, AchE activity in treated larvae was 

suppressed. This may be due to release of fungal toxin in the 

body gradually reducing the efficacy of larvae defense system 

directly impacting the larvae nervous system. 

The present findings are in agreement with Ali, et al. (2017) 
[2] who showed that AChE activity decreased in Bemisia 

tabaci when treated with the fungus Lecanicillium 

muscarium. Also, the activity of AChE in L. migratoria under 

different treatment conditions with the fungus M. anisopliae 

increased during the early period but decreased during the 

later period (Jia, et al., 2016) [28]. Additionally, Ding et al. 

(2005) [14] studied the effects of 4 strains of 2 species of 
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Beauveria against larvae of X. rusticus and reported that the 

activity of AChE first increased after treatment and then 

slowly decreased. The enzyme activity peaked at 72 to 96 h 

post-infection. 
Under stress conditions, the insect produces large quantities 

of reactive oxygen species such as superoxide anion hydroxyl 

radical. These compounds are cytotoxic and help the insect to 

kill pathogens and parasites. However, excessive reactive free 

oxygen radicals can damage the organism itself (Li et al. 

2006) [34]. The protective enzyme system in the insect body 

includes superoxide dismutase, catalase, and peroxidase. All 

these enzymes work coordinately to maintain the organism in 

a state of dynamic equilibrium by keeping free radicals in the 

cell at low levels to prevent the cells from damage (Gao et al. 

1995) [23]. Studies have shown that, after infection by fungi, 

the insect’s protection systems are activated to ward off 

infection and to maintain the normal physiological activities 

(Song et al. 2002; Zhang et al. 2003) [43, 55]. In the same 

context in accordance with the present results, Ding et al. 

(2005) [14] reported that the enzyme activities were peaked at 

72 to 96 h post-infection where larvae produced toxic 

oxidation substances that induced the synthesis of peroxidase 

by the immune system to maintain normal physiological 

functions. However, at 96 h post-infection, possibly due to the 

toxins, peroxidase enzyme synthesis was affected, and its 

activity decreased (Ding et al 2007) [13]. Furthermore, due to 

the proliferation of B. bassiana toxins in the larval body, the 

organ functions in the larvae were blocked and their normal 

physiological activities were affected resulting in the 

inhibition of protein synthesis and protein transportation.  

The electrophoretic analysis of SDS-PAGE protein of control 

and treated larvae of C. pipiens, with sub-lethal dose of B. 

bassiana showed changes in protein pattern. Similar results 

were observed by Abdou et al (2017) [1]. They indicated that 

the total numbers of bands of control larvae were 21 with 

molecular weights ranged from 176.79 to 4.88 kDa, while 14 

bands in treated samples with B. bassiana. The present results 

are in agreement with El-Sonbaty et al., (2016) [18] who 

conveyed similar analysis on haemolymph protein profile of 

Spodoptera littoralis larvae and showed 14differentially 

expressed protein bands ranging from 9.6 - 116.2 KDa post 

treatment with entomopathogenic fungi. The infection 

distinctly affected protein profiles and can be manipulated in 

the proteins of molecular weight in the range of 56.9-82.6 

KDs of prophenoloxidases and phenoloxidases. They 

concluded that entomopathogenic fungi treatment greatly 

affected cellular immune system and protein expression 

consequently, result into death of insect due to disturbance in 

the immune system and proteins. Gabarty et al., (2013) [22] 

reported that SDS protein analysis of the S. littoralis larvae 

revealed that the immune enzymes activity and protein 

concentration were significantly decreased at second, third, 

and fourth day of treatment with B. bassiana and M. 

anisopliae. Abdou et al. (2017) [1] concluded that the 

application of entomofungi as larvicidal agents against 

mosquito larvae caused significant changes in the total protein 

profile of C. pipiens larvae suggesting that toxins secreted by 

these pathogens caused damage to the larval proteins which 

finally leads to larval death. 

The current study concluded that the examined B. bassiana 

sublethal concentrations had a potent inhibitory response 

against main body metabolites, detoxification and antioxidant 

enzymes of C. pipiens larvae proceeded until the fourth day 

after treatment. Hence, it could be successfully used in 

biological control of C. pipiens larvae.  

 
Table 1: Effect of B.bassiana on total glucose, proteins and total 

lipids of the 2nd instar larvae of C. pipiens 
 

Total lipids 

(mg/g.b.wt.) 

Total proteins 

(mg/g.b.wt.) 

Total glucose 

(mg/g.b.wt.) 

Conc. 

(ppm) 

14.43 ±0.5 a 36.4 ±0.1 a 12.27 ±0.2 a 0.0 

9.43 ±0.3 b 34.07 ±0.4 b 11.17 ±0.5 b LC25 

8.83 ±0.6 c 25.77 ±0.7 c 11.57 ±0.3 b LC50 

6.1 ±0.8 d 25.1 ±0.2 d 11.77 ±0.9 b LC90 

71.3 5.7 133.4 F 

Data was expressed as mean ± standard error (SE). Means with 

different letters within column are significantly different. P<0.05 

considered significant.  

 
Table 2: Effect of B. bassiana on acetylcholine esterase, Alpha esterase and Beta esterase of the 2nd instar larvae of C.pipiens. 

 

Conc. 

(ppm) 

Acetylcholine esterase 

(ug AchBr/min/mg protein) 

Alpha esterase 

(ug α- naphthol/min/mg protein) 

Beta esterase 

(ug β- naphthol/min/mg protein) 

0.0 5.28 ±0.2 a 16.33 ±0.5 a 27.23 ±0.9 a 

LC25 4.87 ±0.7 b 10.60 ±0.8 b 20.5 ±0.3 b 

LC50 4.83 ±0.3 c 10.94 ±0.6 b 15.79 ±0.7 c 

LC90 2.98 ±0.6 d 10.98 ±0.4 b 14.51 ±0.5 d 

F 59.21 70.43 60.00 

Data was expressed as mean ± standard error (SE). Means with different letters within column are significantly different. P<0.05 considered 

significant. 

 
Table 3: Effect of B. bassiana on glutathione- S-transferase, peroxidase and Ascorbic acid of the 2nd instar larvae of C. pipiens. 

 

Conc. (PPm) 
Glutathione- S-transferase 

(n-mol-sub. conjugated/min/mg protein 

Peroxidase 

(∆O.D. x103/min/mg protein 

Ascorbic acid 

(ug Ascorbic acid/g.b.wt.) 

0.0 6745 ±2.1a 276.67 ± 1.1 a 10.07 ± 0.18 a 

LC25 6265 ±2.6b 264.67 ±1.3 b 9.65 ± 0.08 b 

LC50 5717 ±2.9c 252 ±0.8 c 9.47 ±0.33 c 

LC90 3521 ±2.7d 245.67 ±0.4 d 8.67  ±0.19 d 

F 244.10 5.40 7.67 

Data was expressed as mean ± standard error (SE). Means with different letters within column are significantly different. P<0.05 considered 

significant.  
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Fig 1: Electrophoretic protein pattern of control and treated 2nd instar larvae of C. pipiens after 96 hrs. M: Marker, Lane 1: Control samples, 

Lane 2: larvae treated with LC25 B. bassiana, Lane 3: larvae treated LC50 B. bassiana and Lane 4:l arvae treated with LC90 of B. bassiana. 

 
Table 4: Molecular weight analysis of Electrophoretic protein pattern of control and treated larvae of C. pipiens. Lane M: protein marker. 1: 

Control larvae, 2: larvae treated with LC25 B. bassiana, 3: larvae treated LC50 B. bassiana and Lane 4: larvae treated with LC90 of B. bassiana. 
 

M. Wt. of bands RF 
1 2 3 4 

Band % Band % Band % Band % 

275.50 0.1168 2.0 -- -- -- 

254.00 0.1629 0.9 -- -- -- 

226.19 0.2144 2.7 -- -- -- 

211.05 0.2251 -- 11.3 8.0 3.2 

188.37 0.2390 6.1 2.8 -- -- 

136.61 0.2787 2.5 4.9 7.2 7.8 

111.61 0.3076 12.3 9.6 8.8 5.7 

97.94 0.3344 0.7 10.2 5.7 5.4 

88.92 0.3687 2.0 2.5 -- -- 

76.80 0.4180 6.9 16.1 16.3 21.3 

69.40 0.4405  2.9 -- -- 

61.21 0.4609 1.8 -- -- -- 

55.60 0.4770  6.5 16.6 21.5 

51.72 0.4845 1.0 -- -- -- 

46.90 0.5091 1.2 -- -- -- 

43.64 0.5338 0.6 18.1 21.8 26.3 

39.73 0.5563  2.0 0.6 -- 

34.84 0.5895 2.9 -- -- -- 

33.89 0.6152 0.1 1.5 1.5 0.5 

30.87 0.6431 0.1 -- -- -- 

28.81 0.6795 9.7 6.8 9.3 6.3 

25.40 0.7063 1.5 4.8 4.2 2.1 

22.35 0.7320 0.9 -- -- -- 

14.18 0.7792 11.6 -- -- -- 
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