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Symbionts associated with insect digestive system 

and their role in insect nutrition  

 
Soumita Pal and Prasun Karmakar 

 
Abstract 
Insect guts are the most suitable breeding habitat for microbial colonization. There is a wide range of 

degree of dependence between insects and gut microbiota for basic functions. Insect digestive tracts 

differ significantly in morphology and physicochemical properties and that greatly influence microbial 

community structure. Midgut of lepidopteran larvae show extreme alkalinity (pH as high as 11–12, and 

alkaline conditions works better for their digestive enzymes. Exceptional condition is present in case of 

termites, with pH ranging from 5 to > 12 in the compartmentalized guts of some soil-feeding species. 

Lack of dependable transmission is the only obstacle to the evolution of intimate associations between 

gut microorganisms and host individuals. Social insects, such as termites,ants, and bees, are exceptions as 

they are provided with specialized beneficial functions in nutrition. There is still a large vacant place in 

information about insect gut communities. The extent of these roles is still unclear and awaits further 

studies.   
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Introduction 
Globally insects are the most diverse and abundant animal clade, on the basis of numbers of 

species, ecological habits, and biomass [3]. The evolutionary success of insects are highly 

attributable to their relationships with beneficial gut microbial communities which contribute 

critically in digestion of recalcitrant food components, govern mating and reproductive 

systems, protection from parasites, aid in intra and inter specific communication and 

increasing its efficiency as disease vectors [24, 52, 54]. Gut symbionts are commonly associated 

with insects feeding on wood or other lignified plant materials. The mutualistic association of 

insects with gut microflora span from the cultivation of fungal gardens to close association 

with symbiotic flagellates or prokaryotic bacteria housed within mycetomes or bacteriocytes of 

the insect fat body [26]. Mutualistic associations with gut microbial communities have great 

implications in insect nutrition and the focus of this review paper is on microbial symbionts 

that colonize the insect digestive tract and are directly associated with insect nutrition. 

  

Symbionts 

A symbiont is an organism that is very closely associated with another, usually larger 

organism that is called host. It can live in or on or sometimes very near to its host. Symbionts 

are of two categories.  

1. Ectosymbiont: An ectosymbiont is an organism that lives outside of its host cell.  

2. Endosymbiont: An endosymbiont is an organism that lives inside of its host cell. 

 

Examples of symbionts: Symbionts mainly comprises of bacteria, fungi, flagelletes, protozoa 

like micro organisms. 

 

Examples of symbionts associated with insect digestive system: Several different types of 

symbionts are present in insect gut. Likewise a variety of bacterial phyla are commonly 

present in insect guts, including Gammaproteobacteria, Alphaproteobacteria, 

Betaproteobacteria, Bacteroidits, Firmicutes including Lactobacillus and Bacillus species, 

Clostridia, Actinomycetes, Spirochetes, Verrucomicrobia, Actinobacteria, and others [20]. Some 

protozoa and fungi also associate with the insect`s digestive system such as in lower termites 

and other wood feeding insects. 
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Stability of the insect gut as a microbial habitat 

From the perspective of microbial colonization, insect guts 

often present unstable habitats. Insects molt numerous times 

during larval development, shedding the exoskeletal lining of 

the foregut and hindgut each time and thus severely disrupting 

or eliminating any attached bacterial populations. The midgut 

produces and repeatedly sheds the peritrophic matrix and 

along with it associated microorganisms, most of which do 

not cross into the space adjacent to midgut epithelial cells. In 

holometabolous insects with distinct larval, pupal, and adult 

stages, there is a radical remodeling of the gut and other 

organs at metamorphosis, with the elimination of the entire 

larval gut and contents as a meconium that is enveloped in the 

peritrophic matrix of the pupal stage. However, many insect 

guts display specialized crypts or paunches that promote 

microbial persistence and insects do not molt once they reach 

the adult stage, so following the final molt, the foregut or 

hindgut wall provides a stable surface for colonization. 

Insects including cockroaches, termites, ants, and some wasps 

and bees, show gregarious or social behavior, including oral 

trophallaxis or coprophagy, which can enable direct or 

indirect social transmission, thus promoting the evolution of 

specialized host-dependent symbionts [31, 33, 50]. These types of 

adaptations for transmission to progeny or colony members 

give evolutionary advantages of maintaining a consistent 

microbiota. 

 

Physical conditions in insect guts  
Physico-chemical conditions in the lumen of different gut 

compartments influence microbial colonization, and these can 

display extreme variation in both pH and oxygen availability. 

The pH of the lumen is actively regulated and often diverges 

from that of the hemolymph (pH nearly 7). Midguts of 

lepidopteran larvae show extreme alkalinity, with pH as high 

as 11–12 [1, 16, 28, 30]. The pH of lepidopteran guts is correlated 

with feeding on tannin-rich leaves and has been interpreted as 

an adaptation that lowers the binding of dietary protein with 

ingested tannins, improving nutrient availability [6], but it also 

has major consequences for microbial communities as it 

excludes most bacteria. In insect guts with large microbial 

communities, microbial metabolism actively shapes 

conditions within the lumen of different gut compartments. 

For example, in detritus feeding larvae of the scarab beetle 

Pachnoda ephippiata, microbial fermentation products 

including acetate, formate, and lactate are abundant in both 

midgut and hindgut, although profiles differ between the two 

compartments [47] A study of the pH along the gut axis in P. 

ephippiata showed regular, pronounced variation, with values 

near 8 in the anterior midgut, rising to > 10 in the center of 

the midgut, and dropping to 7 in the hindgut[47] where 

microbial densities are highest [15]. In contrast, the gut lumens 

of some nonholometabolous insects often show less extreme 

pH gradients [1]. Termites are an exception, with pH ranging 

from 5 to > 12 in the compartmentalized guts of some soil-

feeding species [12, 42]. The extreme alkalinity in some 

compartments of termite guts does not entirely prevent 

microbial colonization but instead supports the growth of 

specialized alkaline-tolerant symbiotic bacteria from 

Firmicutes, Clostridium, and Planctomycetes [7, 43]. Guts of 

termites have been characterized most extensively. Termites 

evolved from cockroach ancestors and have the most 

elaborate known gut communities of any insects. 

 

 

Examples of highly specialized gut bacteria 

The wide range in intimacy and continuity of associations of 

insects with gut microorganisms is illustrated within the 

Heteroptera (order Hemiptera), which includes diverse insects 

with sucking mouthparts that feed on plant or animal fluids 
[41]. Many plant-feeding heteropteran species have midguts 

with caecae or crypts that house populations of symbiotic 

bacteria. At one extreme, these gut symbionts can be strictly 

heritable and approach intracellular symbionts or organelles 

in their level of specialization. The best-studied example is 

Ishikawaella capsulata, which lives in specialized crypts in 

guts of the stinkbug species Megacopta punctatissima 

(family: Plataspidae) [29]. Ishikawaella capsulata has all of the 

hallmarks of an obligate bacteriocyte-associated nutritional 

symbiont. [34, 57]. While I. Capsulate resides in the gut lumen 

and is thus not intracellular or transmitted within eggs, it 

achieves highly efficient vertical transmission: ovipositioning 

females defecate to produce a specialized symbiotic capsule 

on the outside of the egg case, and juveniles immediately 

ingest the capsule following hatching [34]. Many other 

heteropterans also possess bacterial symbionts, often in 

specialized midgut caecae. However, some heteropterans rely 

on environmental acquisition of a specific symbiont strain 

every generation, implying that the host gut selects the 

appropriate bacterial strains from a range of ingested 

organisms. For example, the bean bug, Riptortus pedestris 

(Heteroptera: Alydidae), acquires a specific Burkholderia 

symbiont orally every generation, and the symbiont forms 

dense colonies in midgut crypts [40]. A representative of 

another group of plant-feeding Heteroptera, Nezara viridula 

(Heteroptera: Pentatomidae), was also found to house a 

specific symbiont in gut crypts and to acquire the symbiont 

environmentally each generation [62] suggesting that 

environmental transmission is not always incompatible with 

high specificity of a symbiotic relationship. Grain weevils 

(genus Sitophilus) contain true endosymbionts that are 

transmitted through eggs and that live in cytosol of foregut 

cells of larvae and migrate to midgut epithelial cells in adults, 

apparently using bacterial type III secretion systems for 

cellular invasion [23]. 

  

Digestive symbionts in insects other than termites 

The most prominent examples are Scarabaeids and Tipulids, 

which have cellulolytic and hemicellulolytic bacteria attached 

to brush-like chitinous structures. The guts of omnivorous 

cockroaches contain microbiota of bacteria and methanogenic 

archaea endosymbionts in their hindguts. In the hindgut of 

Acheta domesticus, the density of microorganisms is even 

higher than that in termites, and there are brush-like supports 

for the attachment of bacteria that resemble those in scarab 

beetle larvae. It is very likely that insects other than termites 

access protein and recycle nitrogen via digestion by microbial 

symbionts. Proctodeal feeding is a form of social behavior 

that is restricted to the termites and the wood-feeding 

cockroach, C. punctulatus, but theoretically any consumption 

of feces would also allow access to the microbial protein. 

However, establishment and maintenance of a specific gut 

microbiota, as evidenced in the case of termites by many 

instances of cospeciation between host and symbionts, is 

facilitated by vertical transfer among parent and offspring. In 

contrast to the symbioses between insects and their 

intracellular bacteria, this is probably not accomplished by 

ovarial transmission, but by coprophagy or proctodeal 

trophallaxis. 
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 Role of symbionts in digestion process of termites 

The best-studied nutritional gut mutualisms are those found in 

the hindguts of termites. The lower termite species, 

exclusively comprise wood-feeders, while the higher termite 

species include wood-, litter-, grass-, soil-, and lichen-feeders 
[37, 49]. Each termite species harbours a highly specific 

microbial gut community consisting of several hundreds of 

microorganisms including bacteria, archaea and protists [32]. 

These microorganisms play a dual mutualistic role for their 

host. First, they contribute to lignocellulose digestion and 

produce high levels of acetate, which represents the main 

carbon source for their host [4, 8, 10, 17, 27, 35, 58, 72, 73]. Second, 

they provide their host with nitrogen, which is typically 

deficient in decomposing plant materials [5, 9]. The main part 

of lignocelluloses digestion is carried out by the specialized 

gut community present in the hindgut of termites [36, 56, 67, 70, 

71]. In lower termites, lignocellulose digestion is mostly 

accomplished by protists [18, 19]. Species of the genus 

Treponema, dominating the hindgut of both lower and higher 

termite species, seem to be responsible for most of the 

acetogenic activity. Higher termites typically lack protists in 

their guts. The cellulolytic activity of bacteria within specific 

gut segments contributes critically to lignocellulose 

degradation in the hindgut of higher termites [42, 72]. 

Cellulolytic activity was found in the posterior proctodeal 

segments, which are densely populated by bacteria [70, 71]. 

Metagenomic and proteomic analysis of these regions 

revealed a high abundance of bacterial genes and proteins 

involved in cellulose degradation, acetogenesis and nitrogen 

fixation [11, 72]. 

  

Transfer of symbionts 

Specialized gut symbionts that are maintained through 

vertical transmission are found in social or gregarious insects, 

including social bees and termites. In honey bees (Apis 

mellifera), bacterial symbionts confined to the hindguts of 

adults are acquired in the first few days following emergence 

of adults from the pupal stage, through social interactions 

with other adult worker bees in the colony [50]. Honey bee gut 

inhabitants belong to a small number of distinctive lineages 

found only in honey bees and also in other Apis species and in 

Bombus species (bumble bees), which are also social and 

which are closely related to honey bees [44, 45, 48, 50]. Thus, 

vertical transmission through sociality may facilitate host–

symbiont coevolution and emergence of a distinctive gut 

community. Ant species, all of which are social, also show a 

number of specialized gut bacteria and associated 

morphological modifications of the gut [13, 14] [21, 64, 65]. Termite 

gut communities are more complex, usually containing 

hundreds of species or phylotypes [31, 59]. Transmission 

appears to occur primarily through coprophagy or proctodeal 

trophallaxis within colonies. Different hindgut compartments 

house different bacterial communities. The extent of direct 

transfer of gut bacteria between conspecific hosts in nonsocial 

insects is unclear. Gregarious insects such as cockroaches and 

crickets, although lacking parental care and sociality, can 

transmit bacteria by defecating and feeding in a common area. 

In a study of gut microbiota of two termites, a social wood 

roach, and a solitary cockroach (Periplaneta americana), the 

three social species had guts dominated by specialized 

communities of symbionts, including bacteria and protozoans, 

whereas gut communities of the nonsocial P. americana were 

dominated by bacterial species common in the environment 
[66]. If this pattern were upheld in future studies, it would 

imply a dominant role of sociality in the evolution of 

characteristic gut microbiota in insects. On the other hand, 

even in solitary insects with nonoverlapping generations, 

females could potentially transmit bacteria to progeny simply 

by defecating in the vicinity of eggs and having their gut 

bacteria ingested by their progeny. For this transmission route 

to be effective, larvae and adults would both need to host the 

same bacterial types, and bacteria would need to persist for 

some time in the environment. 

 

Conclusion 
Insect guts, in general, display a large diversity in their 

morphology, physico-chemical properties and food content. 

These factors contribute to the broad array of different 

community structures and shape the gut microbiota of insects. 

Insects exhibit a wide range in their degree of dependence on 

gut microbiota, with extremes represented by some sap 

feeding insects, which have little or no gut microbiota but 

depend on intracellular symbionts for nutrients, and by 

termites, which greatly depend on the complex gut 

communities, that are essential for digesting food and 

producing nutrition. In addition, social insects have evolved 

specific mechanisms for bacterial transfer to progeny such as 

egg-smearing or egg capsules. Gut microorganisms are 

critical to the nutrition, physiology, immune responses, and 

pathogen resistance of many species. In future, we will likely 

learn much more about how insects discriminate between 

mutualistic gut microorganisms and harmful pathogens. Such 

insights will help in efforts to manipulate gut microorganisms 

of insects to control damaging insect species or to protect 

beneficial ones, including pollinators. 
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