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Abstract 
The objective of current investigation was to evaluate the toxicity and developmental effects of 

diofenolan (10.0, 1.0, 0.1, 0.01 and 0.001 ppm) on this insect pest Pectinophora gossypiella (Saunders) 

(Lepidoptera: Gelechiidae) in Physiology laboratory, department of Zoology and Entomology, Faculty of 

Science, Al-Azhar University during 1917. LC50 values were estimated in 0.028 ppm and 0.036 ppm, 

after treatment of newly hatched and full grown larvae, respectively. After treatment of the newly 

hatched or full grown larvae with sublethal concentrations of Diofenolan, larval duration was 

pronouncedly prolonged and the developmental rate was drastically regressed, in a dose-dependent 

course. The pupation process was detrimentally prohibited, regardless the larval instar under treatment. 

Although diofenolan failed to exhibit a disruptive effect on the metamorphosis program (larval-pupal 

intermediates) after treatment of the newly hatched larvae, such program was impaired after treatment of 

full grown larvae, especially at the higher three concentrations. Also, the pupal morphogenesis was 

disturbed (pupal deformities) after treatment of larvae, irrespective of the instar under treatment.   

 

Keywords: Adult, larva, metamorphosis, morphogenesis, mortality, pupa 

 

1. Introduction 
The discriminate and intensive uses of many conventionally synthetic pesticides have led to 

several dramatic problems, such as the environmental pollution, hazards to human and 

animals, destruction of the pollinators and other non-target insects as well as the natural 

enemies, like parasites and predators [1-7]. At present, insect growth regulators (IGRs) are 

considered as the possible alternative agents of the traditional insecticides for controlling 

insect pests [3-5]. IGRs can be grouped according to their mode of action as chitin synthesis 

inhibitors (CSIs) and substances that interfere with the action of insect hormone (i.e. juvenile 

hormone analogues, ecdysteroids) [8]. Diofenolan is a CSI used for the control of several pests, 

such as some lepidopterous species and scale insects [9, 10], Papilio demoleus [11], Musca 

domestica [12], Rhynchophorus ferrugineus [13, 14], Schistocerca gregaria [15-17] and 

Pectinophora gossypiella [18, 19]. Fortunately, it was found non-toxic for several beneficial 

parasitoids and predators of some pests, such as Chrysoperla carnea [20]. 

Worldwide, the pink bollworm Pectinophora gossypiella is one of the most destructive insect 

pests that cause terrible damage to the cotton because it is difficult to be controlled by 

conventional insecticides [21, 22]. Larvae damage the floral outgrowths, flowers, bolls, 

developing seeds within bolls and deteriorate the staple length and strength of lint. The 

termination of boll growth results in boll rotting and premature or partial boll opening [23]. In 

Egypt, this insect causes serious damage to cotton arising to one million kentar annually [24, 25]. 

Moreover, P. gossypiella has been reported to develop resistance against the transgenic cotton 

varieties in some regions of the world, such as Arizona (USA) [26]. In Egypt, also, this insect 

has recently developed resistance to several classes of traditional insecticides currently used in 

cotton fields because of its ability to detoxify these chemicals [27]. Therefore, IGRs have been 

initiated recently to avoid the environment hazards and to minimize the serious problems of 

synthetic insecticides to humans and animals, as well as to delay the resistance development in 

P. gossypiella [28-32]. The present study was conducted to evaluate the toxicity of Diofenolan 

and its disruptive effect on development and metamorphosis of P. gossypiella. 
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2. Materials and Methods  

2.1 Insect culture  

A culture of the pink bollworm Pectinophora gossypiella 

(Saunders) (Lepidoptera: Gelechiidae) was established under 

constant conditions (27±2 °C and 75±5% R.H.) at Department 

of Zoology and Entomology, Faculty of science, Al-Azhar 

University, Cairo, Egypt. For this purpose, a sample of newly 

hatched larvae was obtained from the susceptible culture of P. 

gossypiella maintained in Plant Protection Research Institute, 

Doqqi, Giza, Egypt. Larvae were provided with an artificial 

diet as described by Abd El-Hafez et al. [33]. For rearing 

details and manipulation of all developmental stages under the 

previously mentioned laboratory conditions, see Ghoneim et 

al. [34]. The study was conducted during Feb.-Oct. 2017.  
 

2.2 Diofenolan administration  

Diofenolan (CGA-59205, Aware®) (2S,4R)-2-Ethyl-4-[(4-

phenoxyphenoxy) methyl]-1,3-dioxolane has the molecular 

formula C18H20O4. It was purchased from Sigma-Aldrich 

Chemicals. Five concentration levels of Diofenolan were 

prepared by diluting with distilled water in volumetric flasks, 

as follows: 10.0, 1.0, 0.1, 0.01 and 0.001 ppm. Two 

experimental series of larvae were used: newly hatched larvae 

and full grown (4th instar) larvae. Four replicates 

(10/replicate) of newly hatched larvae, were separately 

transferred into test tube (1.0 X 6.0 cm) (one larva/tube) 

containing 3 gm of the artificial diet and sprayed (1 

spray/tube), using an atomizer, with each of the prepared 

concentrations. Control replicates were treated with distilled 

water only using the same technique. Also, four replicates 

(10/replicate) of full grown larvae were separately transferred 

into Petri dishes (one replicate/dish). Each replicate was 

sprayed with one of the prepared concentrations using an 

atomizer. Control replicates were treated with distilled water 

only using the same technique. The treated and control larvae 

were left until pupation and all observations were recorded 

daily. 

  
2.3 Criteria of study 
Toxicity: All mortalities of treated and control (larvae, pupae 

and adults) of P. gossypiella were recorded every day and 

corrected according to Abbott’s formula [35] as follows: 

 
 

The LC50 values were calculated for general mortality by 

Microsoft® office Excel (2007), according to Finny[36]. 

 

Developmental and metamorphic parameters: 

Developmental rate: Dempster’s equation [37] was applied for 

calculating the developmental duration, and Richard’s 

equation [38] was used for calculating the developmental rate.  

 

Pupation rate: The pupation rate of the successfully 

developed pupae was calculated according to Jimenez-Peydro 

et al. [39] as follows: 

P.R. = [No. puparated larvae / No. treated larvae] × 100 

 

Deranged metamorphosis: Deranged metamorphosis 

program was observed and calculated in larval-pupal or 

pupal-adult intermediates (%). Also, pupal deformation was 

calculated in %. Features of impaired development were 

recorded in photos.  

Pupal water loss: Pupal water loss was calculated depending 

on the data of the initial and final weights of the pupae, as 

follows: 

 

Water loss % = [initial weight – final weight /initial  

 Weight] × 100 

 

2.4. Statistical analysis  
Data obtained were analyzed by the Student's t-distribution, 

and refined by Bessel correction [40] for the test significance of 

difference between means. 

 

3. Results  

3.1 Toxic effects of Diofenolan  

Five concentration levels (10.0, 1.0, 0.1, 0.01 and 0.001 ppm) 

of diofenolan had been applied, via the artificial diet, on the 

newly hatched larvae of P. gossypiella. Data of toxic effects 

on all developmental stages are presented in Table 1. On the 

basis of these data, the strongest toxic effect of diofenolan 

was exhibited at its highest concentration level since complete 

mortality (100%) was recorded among treated larvae. Thus, 

no pupae had been produced. At other concentration levels, 

diofenolan displayed various degrees of toxicity among larvae 

and pupae but failed to exhibit adulticidal effect because no 

adult mortality was observed. Both larval and pupal 

mortalities were consecutively correlated with the 

concentration level. Moreover, the strongest acute toxicity 

was exhibited on larvae at 1.0 ppm (77.5% vs. 10% mortality 

of control congeners). In an ascending trend of concentration 

level, the corrected mortalities were determined as 11.1, 41.7, 

61.1, 88.9 and 100 %, respectively. LC50 was calculated in 

0.028 ppm. 

In the light of data arranged in Table 2, treatment of full 

grown larvae of P. gossypiella with diofenolan concentrations 

resulted in different degrees of toxicity because it failed to 

exhibit lethal effect on larvae, at the lower concentration 

levels, or adults, at the lowest concentration level. On the 

other hand, it caused complete pupal mortality (100%) at the 

highest concentration level. Thus, no adults could emerge. In 

general, pupal and adult mortalities run in a dose-dependent 

course and the corrected mortalities were found in a similar 

trend (10.80, 37.80, 64.90, 78.40 and 100%, at 0.001, 0.01, 

0.1, 1.0 and 10.0 ppm, respectively). LC50 was calculated in 

0.036 ppm. 

 

3.2 Diofenolan effects on Development and 

Metamorphosis 

After treatment of the newly hatched larvae of P. gossypiella 

with diofenolan concentrations, data of the most important 

developmental criteria were distributed in Table 3. According 

to these data, the larval duration was significantly prolonged 

in a dose-dependent course (38.4±3.57, 35.6±1.09, 32.5±1.04 

and 29.3±0.72 days, at 1.0, 0.1, 0.01 and 0.001 ppm, 

respectively, vs. 15.1±0.25 days of control larvae). The 

developmental rate is another estimated parameter 

substantiating this prolongation since it was considerably 

regressed proportionally to the ascending concentration. In 

respect of the inhibitory effect of diofenolan on pupation, the 

calculated pupation% was severely reduced in a dose-

dependent course (22.5, 50.0, 67.5 and 82.50%, at 1.0, 0.1, 

0.01 and 0.001 ppm, respectively, vs. 90.0% pupation of 

controls). In addition, the pupal duration was elaborately 

prolonged in a consecutive trend with the ascending 

concentration (10.5±1.32, 10.1±0.15, 9.8±0.75 and 9.2±0.29 
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days, at 1.0, 0.1, 0.01 and 0.001 ppm, respectively, vs. 

7.3±0.08 days of control pupae).  

Because the pupal death may be due to the desiccation caused 

by diofenolan, loss of body water (%) was estimated. Water 

loss of pupae was found in diverse percentages since the 

larger amount of body water was lost by pupae at the highest 

concentration level while lower water loss% was calculated 

for pupae at other concentration levels (for detail, see Table 

3). Thus, the desiccating action of Diofenolan on pupae 

depended on the concentration level.  

After treatment of the full grown larvae with diofenolan 

concentration levels, data of the developmental criteria are 

arranged in Table 4. Depending on these data, the larval 

duration was remarkably lengthened in a dose-dependent 

manner (9.0±0.98, 8.3±0.49, 6.2±0.41, 4.6±0.50 and 4.0±0.41 

days, at 10.0, 1.0, 0.1, 0.01 and 0.001 ppm, respectively, vs. 

3.0±0.09 days of control pupae). This prevalent prolongation 

was reflected on the developmental rate since it was 

considerably regressed in a dose-dependent trend. Only at the 

higher concentrations of Diofenolan, the pupation rate was 

remarkably depressed (70.0, 92.5 and 97.5%, at 10.0, 1.0 and 

0.1 ppm, respectively, vs. 100% pupation of control insects).  

At the highest concentration, all pupae died. So, pupal 

duration could not be measured. At other concentration levels, 

the pupal duration was significantly prolonged (9.4±0.52, 

9.0±0.16, 8.1±0.21 and 7.4±0.1, at 1.0, 0.1, 0.01 and 0.001 

ppm, respectively, vs. 7.4±0.17 days of control pupae). The 

pupal water loss% increased in a dose-dependent course 

indicating that Diofenolan exerted a predominant desiccating 

action on the treated pupae.  

In respect of the metamorphosis program, diofenolan 

exhibited no effect since no larval-pupal or pupal-adult 

intermediates could be produced after treatment of newly 

hatched larvae (Table 3). On the contrary, treatment of full 

grown larvae with the higher three concentration levels of 

diofenolan resulted in impaired program (51.14, 29.73 and 

15.38% larval-pupal intermediates, at 10.0, 1.0 and 0.1 ppm, 

respectively, Table 4). The major features of these 

intermediates were shown in Figure (1). With regard to the 

pupal morphogenesis, treatment of newly hatched larvae with 

diofenolan resulted in the formation of deformed pupae 

(66.67 and 50.0%, at 1.0 and 0.1 ppm, respectively, Table 3). 

After treatment of full grown larvae with only the highest 

concentration (10.0 ppm) resulted in 25.0% pupal 

deformations (Table 4). Some features of the pupal 

malformations were demonstrated in Figure 2.  
 

Table 1: Toxicity and lethal effects (%) of diofenolan treatments of newly hatched larvae of P. gossypiella. 
 

Conc. 

(ppm) 
Larval mortality Pupal mortality Adult mortality Total mortality Corrected mortality 

LC50 

(ppm) 

10.0 100.0 --- --- 100.0 100.0 

 

 

0.028 

1.0 77.5 58.3 00.00 90.00 88.90 

0.1 50.0 30.4 00.00 65.00 61.10 

0.01 32.5 22.1 00.00 47.50 41.70 

0.001 17.5 3.10 00.00 20.00 11.10 

Control 10.0 00.0 00.00 10.00 00.00 

Conc.: Concentration level. ---: no pupae or adults. 

 

Table 2: Toxicity and lethal effects (%) of diofenolan treatments of full grown larvae of P. gossypiella. 
 

Conc. 

(ppm) 

Larval 

mortality 

Pupal 

mortality 

Adult 

mortality 

Total 

mortality 

Corrected 

mortality 

LC50 

(ppm) 

10.0 30.00 100.0 --- 100.0 100.0 

 

 

0.036 

1.0 07.50 45.80 60.00 80.00 78.40 

0.1 02.50 38.60 45.10 67.50 64.90 

0.01 00.00 25.00 23.70 42.50 37.80 

0.001 00.00 17.50 00.00 17.50 10.80 

Control 00.00 07.50 00.00 07.50 00.00 
Conc.: see footnote of Table (1), ---: no adults. 

 
Table 3: Developmental effects of diofenolan treatments of newly hatched larvae of P. gossypiella. 

 

 

Conc. 

(ppm) 

Larval stage Pupal stage 

Duration (mean 

days + SD) 

Develop. 

rate (%) 

Larval-pupal 

Inter. (%) 

Pupation 

rate 

(%) 

Deformed 

pupae (%) 

Duration (mean 

days + SD) 

Water 

loss 

(%) 

1.0 38.4±3.57 d 2.60 00.00 22.5 66.67 10.5±1.32 c 21.1 

0.1 35.6±1.09 d 2.81 00.00 50.0 50.00 10.1±0.15 d 17.1 

0.01 32.5±1.04 d 3.07 00.00 67.5 00.00 9.8±0.75 d 15.1 

0.001 29.3±0.72 d 3.41 00.00 82.5 00.00 9.2±0.29 d 16.9 

Control 15.1±0.25 6.62 00.00 90.0 00.00 7.3±0.08 18.6 

Conc.: see footnote of Table 1. Mean±SD followed by letter a: not significantly different (P>0.05), b: significantly different (P<0.05), c: highly 

significantly different (P<0.01), d: very highly significantly different (P<0.001). Develop.: Developmental. Inter.: Intermediates. 
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Table 4: Developmental effects of diofenolan treatments of full grown larvae of P. gossypiella 
 

 

Conc. 

(ppm) 

Larval stage Pupal stage 

Duration (mean 

days + SD) 

Develop. rate 

(%) 

Larval-pupal 

Inter. (%) 

Pupation 

rate 

(%) 

Deformed 

pupae (%) 

Duration (mean 

days + SD) 

Water 

loss 

(%) 

10.0 9.0±0.98 d 11.11 57.14 70.00 25.00 --- --- 

1.0 8.3±0.49 d 12.04 29.73 92.50 00.00 9.4±0.52 d 23.5 

0.1 6.2±0.41 d 16.12 15.38 97.50 00.00 9.0±0.16 d 21.9 

0.01 4.6±0.50 d 21.74 00.00 100.0 00.00 8.1±0.21 c 19.5 

0.001 4.0±0.41 c 25.00 00.00 100.0 00.00 7.4±0.10 a 18.1 

Control 3.0±0.09 33.33 00.00 100.0 00.00 7.4±0.17 17.7 

Conc.: see footnote of Table (1). a, c, d, Develop., Inter.: see footnote of Table (3). ---: died pupae. 

 

 
 

Fig 1: Larval-pupal intermediates of P. gossypiella as features of disturbed metamorphosis program after treatment of the full grown larvae with 

diofenolan larval treatments, regardless the treated instar or concentration level. (A): normal full grown larva. (B): normal pupa. (C & D): 

various larval-pupal intermediates. 

 

 
 

Fig 2: Deformed pupae of P. gossypiella by diofenolan. (A): normal pupa. (B, C, D & E): different features of pupal deformations. 

 

4. Discussion 

4.1 Affected survival potential of P. gossypiella by 

Diofenolan  

Various insect species had been reported to suffer the toxic 

effects of several IGRs, such as Spodoptera littoralis by 

diflubenzuron [41], triflumuron [42], flufenoxuron [43], lufenuron 
[44-47], buprofezin [48, 49], methoxyfenozide [50], cyromazine [51]; 

Papilio demoleus by diofenolan [11]; Eurygaster integriceps by 
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Pyriproxyfen [52]; Dysdercus koenigii by flufenoxuron [53]; 

Halyomorpha halys by diflubenzuron [54]; Spodoptera litura 

by chlorfluazuron [55]; Locusta migratoria by flufenoxuron, 

RH-5849 and Pyriproxyfen [56]; Culex pipiens by kinoprene 
[57]; Agrotis ipsilon by flufenoxuron and methoprene [58] and 

Tribolium castaneum by lufenuron [59]. Recently, IGRs of 

different categories exhibited varying degrees of toxicity 

against some insects, such as pyriproxyfen against Spodoptera 

mauritia [60]; lufenuron and methoxyfenozide against T. 

castaneum [61]; methoxyfenozide against C. pipiens [62]; RH-

5849 and tebufenozide against Ephestia kuehniella [63]; 

lufenuron against Glyphodes pyloalis [64] and Helicoverpa 

armigera[65]; Fenoxycarb against Corcyra cephalonica [66, 67]; 

buprofezin against Paracoccus marginatus [68]; 

chlorfluazuron, cyromazine and lufenuron against 

Ctenocephalides felis [69]; methoprene and pyriproxyfen 

against Culex quinquefasciatus and Aedes albopictus [70]; 

cyromazine against Musca domestica, Stomoxys calcitrans 

and Fannia canicularis [71]; novaluron against P. gossypiella 
[34]; etc. Results of the present study on P. gossypiella were, to 

some extent, in agreement with these reported results, since 

diofenolan displayed various degrees of toxicity on larvae and 

pupae, after treatment of the newly hatched larvae. The 

strongest toxic effect was exhibited at the highest 

concentration level (100% larval mortality, at 10.0 ppm). 

After treatment of full grown larvae, diofenolan exhibited a 

dose-dependent toxicity on larvae and pupae but no larval 

mortality was observed at the lower concentrations. With 

regard to the adult survival, diofenolan failed to exhibit an 

adulticidal effect, after treatment of newly hatched larvae. On 

the other hand, treatment of full grown larvae resulted in adult 

mortality, in a dose-dependent course, but no adult mortality 

was recorded at the lowest concentration (0.001 ppm).  

Various LC50 values of IGRs had been determined against 

many insects, such as 350.45 and 453.78 ppm of novaluron 

and lufenuron, respectively against S. litura [72]; 0.025% of 

pyriproxyfen against S. litura larvae [73]; 8.47 mg /L of 

hexaflumuron against H. armigera [74]; 0.05 and 0.005 

μg/insect of RH-5849 and tebufenozide, respectively against 

E. kuehniella [63]; 24.54 µg/L of methoxyfenozide against C. 

pipiens [62]; 19 ppm of lufenuron against G. pyloalis [64]; 0.19, 

2.66, and 0.20 ppm of chlorfluazuron, cyromazine and 

lufenuron, respectively against C. felis [69]. Moreover, 

variation in LC50 values was reported for novaluron on S. 

littoralis, since LC50 values were 2.71 and 2.65 ppm, after 

treatment of penultimate instar larvae and last instar larvae, 

respectively [75]. Also, LC50 values of cyromazine against the 

same lepidopterous insect were 74.44 and 82.91 ppm, after 

treatment of penultimate instar larvae and last instar larvae, 

respectively [51].  

In the present study on P. gossypiella, LC50 value of 

diofenolan varied depending on the larval instar under 

treatment, since it was estimated in 0.028 ppm, after treatment 

of newly hatched larvae, but 0.036 ppm after treatment of full 

grown larvae. As clearly shown, Diofenolan was more toxic 

than other IGRs against the same lepidopterous insect, since 

LC50 values of tebufenozide, acetamiprid and ethoxazole were 

determined in 2.41, 6.07 and 31.01 ppm, respectively [76]; 

0.042 and 0.196 ppm of diflubenzuron and chlorfluazuron, 

respectively [77]; 87.5 and 15.1 ppm of buprofezin alone and in 

combination with piperonyl butoxide, respectively [78]; 61.859 

ppm of teflubenzuron [79]; 20.6, 47.4 and 50.8 ppm of 

pyriproxyfen, methoxyfenozide and lufenuron, respectively 
[80] as well as 0.187 and 0.765 ppm of novaluron, after 

treatment of newly hatched and full grown larvae, 

respectively [34]. Thus, LC50 value depends on several factors, 

such as susceptibility of the insect and its treated stage or 

instar, lethal potency of the tested compound and its 

concentration level, method and time of treatment, as well as 

the experimental conditions. 

To explicate the recorded mortalities of larvae, pupae and 

adults of P. gossypiella after treatment with diofenolan, in the 

present study, IGRs exhibit their toxic effects on insects with 

a mode of action other than that of conventional insecticides. 

Furthermore, CSIs interfere with the synthesis or/and 

deposition of chitin on the exoskeleton or/and other chitinized 

internal structures, such as the peritrophic matrix [81, 82]. In 

other words, three sites have been proposed for describing the 

mode of action of CSIs namely: inhibition of chitin synthetase 

(or its biosynthesis), inhibition of proteases' biosynthesis and 

inhibition of UDP-N-acetylglucosamine transport through the 

membrane [83]. Furthermore, it was suggested that Diofenolan 

interferes with the transport system of UDP-N-acetyl amine 

across the membrane [84]. 

In some detail, the larval deaths of P. gossypiella by 

Diofenolan, in the current investigation, may be attributed to 

the failure of larvae to moult owing to the inhibition of chitin 

formation [44, 45], to the inability to shed their exocuticle[85], or 

to swallow sufficient air for splitting the old cuticle and 

expand the new one [86]. Also, these larval deaths may be due 

to the prevention of feeding and continuous starvation of the 

present insect [87]. Although the disturbance of hormonal 

regulation or the disrupting of normal activity of the 

endocrine system in insects by IGRs was reported [88, 89] and 

suggested for some mosquito species [90, 91], the pupal deaths 

in P. gossypiella, in the present work, could not be directly 

relate to the hormonal activity of diofenolan, but to other 

causes, such as suffocation, bleeding and desiccation due to 

imperfect exuvation, failure of vital homeostatic mechanisms, 

etc. [92]. This suggestion can easily be substantiated since 

diofenolan exerted a predominant desiccating action on pupae 

of P. gossypiella, in a dose-dependent manner, in the present 

study. In addition, the adult mortality of P. gossypiella after 

treatment of full grown larvae with Diofenolan, in the current 

study, can be explained by the retention and distribution of 

this compound in the insect body as a result of rapid transport 

from the gut of treated larvae into other tissues, by the direct 

and rapid transport the haemolymph to other tissues, and/or 

by lower detoxification capacity of adults against the tested 

CSI [93].  

 

4.2 Retarded development of P. gossypiella by Diofenolan 
Many IGRs (including CSIs) exhibited various inhibitory 

activities against the development of various insects, such as 

diflubenzuron [41], methoprene and fenoxycarb [94], lufenuron 
[46], novaluron [75] and cyromazine [51] against S. littoralis; 

diofenolan against P. demoleus [11]; chlorfluazuron against S. 

litura[55]; novaluron against A. aegypti [95] and C. pipiens [96, 

91]; kinoprene against C. pipiens [57]; methoprene and 

flufenoxuron against A. ipsilon [58]. Recently, the 

developmental duration was prolonged indicating regressed 

developmental rate in some other insects by various IGRs, 

such as Plutella xylostella by Pyriproxyfen [97]; G. pyloalis by 

Lufenuron [64]; C. pipiens by methoxyfenozide [62] and N-tert-

butylphenyl thenoylhydrazide (ecdysteroid derivative) [98]; C. 

cephalonica by fenoxycarb [67]; etc.  

In agreement with those aforementioned results of retarded 

development, results of the present investigation recorded a 
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drastic retarding effect of diofenolan on the development of P. 

gossypiella, since larval and pupal durations were remarkably 

prolonged after treatment of newly hatched or full grown 

larvae. In addition, the present results were in accordance 

with those reported results of retarded development (as 

expressed in regressed developmental rate) of the same 

lepidopterous insect after treatment of newly hatched larvae 

with hexaflumuron [99]; diflubenzuron and chlorfluazuron [77]; 

buprofezin [78]; teflubenzuron [79]; chromafenozide and 

diflubenzuron [100]; lufenuron and Pyriproxyfen [80] and 

novaluron [34]. In contrast, the present results disagreed with 

those results of enhanced development (shortened larval 

and/or pupal durations) in P. gossypiella after treatment with 

Methoxyfenozide [80] and other insects, such as 

Rhynchophorus ferrugineus by lufenuron and diofenolan [101], 

A. ipsilon by flufenoxuron[102] and Schistocerca gregaria by 

lufenuron [103]. In addition, diofenolan and lufenuron failed to 

affect the development of M. domestica [12].  

In the current study, retarded development of P. gossypiella 

by Diofenolan, as expressed in prolonged larval and pupal 

durations, may be attributed to the indirect interference of this 

compound with neuroendocrine organs responsible for the 

synthesis and release of tropic hormones, such as 

prothoracicotropic hormone [104]. Also, diofenolan might 

affect the tissues and cells undergoing mitosis [105] or 

exhibited a delaying effect on the ecdysis and transformation 
[86]. In particular, the final step of chitin biosynthesis pathway 

was inhibited by this CSI and the precursor was not converted 

into chitin leading to a prolongation of the developmental 

period [91].  

 

4.3. Disrupted metamorphosis and morphogenesis of P. 

gossypiella by Diofenolan  

From the practical point of view, the disruptive effects of 

IGRs on insect metamorphosis may be important because they 

could lead to various morphogenic defects as well as 

mortality [106]. It is obvious from various studies that the major 

symptoms of impaired metamorphosis of an insect, after 

treatment with various IGRs, had been described as reduction 

of pupation and adult emergence, production of larval-pupal 

and/or pupal-adult intermediates, deformed larvae and/or 

pupae and the production of supernumerary larval instars 

(superlarvae). However, all or some of these features were 

observed in various insects as responses to the disruptive 

effects of different IGRs, such as S. littoralis by 

chlorfluazuron [107], triflumuron [43], lufenuron [44, 45], 

flufenoxuron [42, 43], methoprene and fenoxycarb [94]; 

novaluron [75] and cyromazine [51]. Also, some or all of these 

symptoms of the impaired metamorphosis were recorded after 

treatment of different insects with several IGRs, such as T. 

castaneum and T. confusum [108], Liriomyza trifolii [109] and 

Callosobruchus maculates [110] by Cyromazine; H. 

armigera[111], Phlebotomus papatasi [112], A. aegypti [113, 114], 

M. domestica [115] by novaluron; Lipaphis erysimi by 

Pyriproxyfen [116]; Rh. Ferrugineus [101] and P. demoleus[11] by 

diofenolan; Lobesia botrana by lufenuron [117]; C. pipiens by 

kinoprene [62]; etc.  

In the current study, diofenolan detrimentally suppressed the 

pupation rate, after treatment of newly hatched or full grown 

larvae of P. gossypiella, regardless the concentration level. 

This results was, to a great extent, consistent with those 

reported results of suppressed pupation rate of some insects 

by various IGRs, such as P. xylostella by hexaflumuron [97], S. 

littoralis by novaluron [75] and cyromazine [51], G. pyloalis by 

lufenuron [64] and fenoxycarb [66] as well as Encarsia formosa 

by pyriproxyfen and fenoxycarb [118]. 

In addition, the pupal morphogenesis in P gossypiella was 

deranged in the present study, as appeared in different pupal 

deformities, after treatment of newly hatched or full grown 

larvae with diofenolan. This result corroborated with similar 

deranged pupal morphogenesis observed in several insects 

after treatment with different IGRs, such as T. castaneum and 

T. confusum after treatment with cyromazine [108], C. 

cephalonica after topical application of last instar larvae with 

fenoxycarb [67] and P. gossypiella after treatment of the full 

grown larvae with novaluron [34]. Whatever the mode of 

action, diofenolan suppressed the chitin synthesis and 

prevented the normal deposition of new cuticle during 

apolysis leading to the production of pupal deformities [119]. 

With regard to the metamorphosis program, in the current 

investigation on P. gossypiella, diofenolan failed to produce 

larval-pupal intermediates after treatment of the newly 

hatched larvae, but the program was seriously impaired after 

treatment of full grown larvae, especially at the higher three 

concentrations. This feature of impaired metamorphosis was, 

also, described as abnormal or lethal pupation [120]. Our result 

was, to some extent, in agreement with some of those reported 

results of disturbed metamorphosis of a number of insect 

pests by various IGRs, such as H. armigera by hexaflumuron 
[74], S. littoralis by novaluron [75] and cyromazine [51], C. 

cephalonica by fenoxycarb [67] and P. gossypiella by 

novaluron [34]. Also, the larval-pupal intermediates were 

observed after topical treatment of last instar larvae of 

Spodoptera exempta, Spodoptera exigua, S. littoralis, 

Mamestra brassicae, Galleria mellonella, Mythimna 

unipuncta and Spodoptera frugiperda with RH-5849, 

tebufenozide or methoxyfenozide [121, 92, 122]. 

The production of larval-pupal intermediates on P. 

gossypiella, in the present study, indicated the disturbance of 

metamorphosis program by diofenolan. It can be interpreted 

by the interference of diofenolan with the hormonal regulation 

of pupation program [88]. For some detail, some conceivable 

scenarios can be described herein. (1) Diofenolan might 

inhibit the metamorphosis program via an ecdysteroid 

reduction, interference with the release of eclosion hormone 

or/and inhibition of the neurosecretion [123]. (2) The 

production of these larval-pupal intermediates might indicate 

a juvenile property of diofenolan retarding the perfect larval-

pupal transformation. These mosaic creatures are unusual and 

died soon after formation. (3) The production of intermediate 

creatures can be explicated by an inhibitory effect of 

diofenolan on the DNA synthesis [124] or the chitin 

biosynthesis and chitin synthase [125]. (4) The molt induction 

had lethal consequences because the induction of a rapid molt 

did not provide enough time for the completion of larval-

pupal transformation. Thus, the insects molted to nonviable 

forms between the developmental stages [126]. The molt 

induction during the early phase of last instar produce larval-

like individuals, while those formed in the late phase produce 

pupal-like individuals [127]. 

 

5. Conclusion 

On the basis of overall findings, it can be concluded that 

diofenolan is toxic to some developmental stages of P. 

gossypiella, as well as caused various impairing effects on its 

development, metamorphosis and morphogenesis. Thus, 

diofenolan may be considered as a leading target compound 

having the potential to control P. gossypiella which has 



Journal of Entomology and Zoology Studies 
 

~ 1215 ~ 

developed resistance to the majority of synthetic pesticides.  
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