

E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2018; 6(3): 1357-1361 © 2018 JEZS Received: 03-03-2018 Accepted: 04-04-2018

Hari Om Verma The Academy of Environmental Biology, Lucknow, Uttar Pradesh, India

Krishna Gopal The Academy of Environmental Biology, Lucknow, Uttar Pradesh, India

Suyash Tripathi The Academy of Environmental Biology, Lucknow, Uttar Pradesh, India

Abhay Singh The Academy of Environmental Biology, Lucknow, Uttar Pradesh, India

Correspondence Hari Om Verma The Academy of Environmental Biology, Lucknow, Uttar Pradesh, India

Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com

A study on ichthyofaunal diversity and water quality of Bakhira Lake, Uttar Pradesh, India

Hari Om Verma, Krishna Gopal, Suyash Tripathi and Abhay Singh

Abstract

The ichthyofaunal study was conducted on the seasonal basis from October 2014 to November 2015 in relation to water quality of Bakhira Lake. The study exposed that physicochemical parameters of Bakhira Lake were agreeable for 45 commercially importance fish species, belonging to 7 orders, 17 families, and 32 genera. The Cypriniformes were dominant with 18 species, followed by Siluriformes (12), Perciformes (9), Clupeiformes (3), Osteoglossiformes, Mugiliformes and Synbranchiformes each with 1 species. About their conservation condition, 38 species were least concern, 1species was vulnerable, 3 species were near threatened and 3 species was data deficient. The water quality parameters such as temperature, pH, alkalinity, hardness, dissolved oxygen, ammonia, nitrate, nitrite and phosphate were recorded and found to be good for aqua life.

Keywords: Bakhira Lake, Ichthyofaunal diversity, conservation status, economic value

Introduction

Bakhira Lake is the largest natural lake of Uttar Pradesh, situated 44 km east of Gorakhpur city. It is a vast stretch of water body expanding over an area of 29 km². The landscape and terrain of the wetland is almost flat, representing a typical 'tarai' landscape. This is an important lake of eastern UP, which provides wintering and staging ground for a number of migratory waterfowls and is a breeding ground for resident birds. The villagers from the surrounding villages depend on the lake for their livelihood in the form of fishing, agricultural activities and fuel wood collection. The aquatic ecosystem is highly dependent on water quality and biological diversity. Physicochemical parameters of water play a significant role in the biology and physiology of fish ^[1]. Lakes and reservoirs contribute to the single largest inland fishery resources in terms of both size and production potential. Fishes are the important indicator of aquatic ecosystem and occupy a remarkable position from a socioeconomic point of view. Decline in aquatic diversity as a result of overfishing, insufficient management practices and habitat degradation, which reduces the chances of its sustainability ^[2]. Environmental changes are either due to natural causes or human activity. At present, most lakes and rivers in the world are used by people for multiple purposes such as waste disposal, industrial processes, fisheries, recreation, etc. identified habitat alteration and destruction as the major cause of most extinction of freshwater fishes. In the current study, our main objective was to estimate the suitability of water to nurture sustainable fishery, by examine water quality parameters. We explain the ichthyofaunal diversity in Bakhira Lake, in relation with the physicochemical parameters of water.

Materials and Methods

For the evaluation of ichthyofaunal diversity and water quality of Bkhira Lake we were selected five sampling sites statistically (Fig.1). For analysis of water quality parameters of Bkhira lake using standard methods ^[3] sampling were conducted between 9:00 AM and 11:00 AM. Water samples were directly taken in wide mouth pre cleaned plastic bottles for analysis of various physico-chemical properties. ELICO water quality analyzer PE 138 kit used for the determination of dissolved oxygen concentration or by winklers method on site. Samples were transported to the laboratory for analysis of other parameters, under standard ideal conditions. ELICO water quality analyzer model no.PE 138 was used for analysis of Temperature, pH and dissolved oxygen. ELICO SL27 spectrophotometer used measurement of Ammonia, nitrate, nitrite and phosphate. Through experimental fishing at all sampling sites of Bakhira lake alive fish samples were collected for identification at that place and also preserved in 10% formalin

Journal of Entomology and Zoology Studies

for further analysis at laboratory. Fishes are identified based on the work of Jhingran (1991)^[4] with minor amendment as followed by Day's Fauna^[5-7]. For catching fish mainly tow type of fishing nets gill net and cost net of varying mesh size were operated by local expert fisherman. During netting maximum care should be taken to avoid defecation or disgorgement of fish's organs due to stress. Collected specimens were identified on the basis of morphometric and meristic characters.

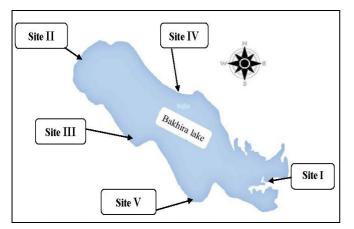


Fig 1: Sampling sites of Bakhira lake (Google map)

 Table 1: Morphometric characters and metrological data of Bakhira lakes.

Parameters	Bakhira lakes
Longitude	83°12'18" E
Latitude	26°56'38" N
Altitude (masl)	167
Area (ha)	2894
Maximum depth (m)	5.8
Surface area (km ²)	9.69
Catchment area (km ²)	8.79
Annual rainfall (mm)	2089

Results and Discussion

The mean values \pm standard error of water quality parameters were shown in Table 2, and the fish diversity and seasonal availability are presented in Table3, 4 and 5. The seasonal survey of the ichthyofauna showed the occurrence of 45 commercially importance indigenous fish species, belonging to 7 orders, 17 families, and 32 genera. The Cypriniformes were dominant with 18 species, followed by Siluriformes (12), Perciformes (9), Clupeiformes (3), Osteoglossiformes, Mugiliformes and Synbranchiformes each with 1 species. Similar results, a total of 29 fish species belonging to 10 families, 7 orders, and 15 genera were reported for the Halali Reservoir, Vidisha, Madhya Pradesh ^[8]. For fish growth and sustainable development of ichthyofaunal diversity aquatic habitat and water quality parameters play key role in aquatic ecosystem.

 Table 2: Seasonal variation of physico-chemical parameters of water during the study period

Parameters	Summer	Winter	Monsoon
Temperature (⁰ C)	30.00	20	27.00
pH	7.89 ± 0.08	7.78±0.09	7.95±0.19
Alkalinity (mg l ⁻¹)	93.60±1.10	105.46±2.16	98.66±2.43
Hardness (mg l ⁻¹)	123.20±3.31	117.33±2.60	121.60±2.83
Dissolved oxygen (mg l ⁻¹)	5.49±0.13	6.01±0.08	5.94±0.09
Ammonia (mg l ⁻¹)	0.58 ± 0.00	0.60±0.01	0.59±0.01
Nitrate (mg l ⁻¹)	0.70±0.14	1.39±0.22	1.43±0.18
Nitrite (mg l ⁻¹)	0.30±0.03	0.33±0.02	0.33±0.02
Phosphate (mg l ⁻¹)	0.25±0.01	0.21±0.01	0.21±0.01

Temperature is one of the important factors for the aquatic flora and fauna. Increase or decrease of temperature directly or indirectly impacts species distribution and the seasonality of production in fishes ^[9]. Bakhira lake temperature were recorded 20 to 30 (°C) which is suitable for aqua life except winter season temperature goes down. pH is calculated mathematically by, the negative logarithm of hydrogen ions concentration. Carbon dioxide which is an acidic gas those concentration greatly influenced pH of natural water body. Bakhira lake has pH value ranges between 7.78±0.09 to 7.95±0.19. Between 6.7 and 9.5 suitable pH range for fish fauna [10]. Alkalinities ranged were recorded between 93.60±1.10 mg l⁻¹to 105.46±2.16mg l⁻¹. During winter season maximum alkalinity values were recorded and during summer season minimum value of alkalinity were recorded. Bakhira Lake hardness value ranged between 117.33±2.60 mg l⁻¹ to 123.20±3.31 mg l⁻¹ were recorded similar result also observed ^[11]. During winter minimum concentration of total hardness were recorded and in the summer season maximum in concentration. Availability of dissolved oxygen was recorded in the Bakhira lake water ranges between 5.49±0.13 mg l⁻¹to 6.01±0.08 mg l⁻¹.During summer season dissolved oxygen concentration were recorded minimum, whereas maximum dissolved oxygen were concentration were recorded during winter season. DO level >5 mg l⁻¹is essential for support good fish production ^[12]. Increased microbial activity and raise temperature depletion of dissolve oxygen in water. Decomposition of organic matter and protein metabolism after feed digestion ammonia excreted by bacteria and fish such as dead planktons and wasted food etc., concentration of ammonia were recorded 0.58±0.00 mg l⁻¹ to 0.60±0.01mg l⁻¹ during the investigation. Other parameters like nitrate, nitrite and phosphate were recorded under desired condition.

Table 3: Fish species	diversity in	n Bakhira lake.
-----------------------	--------------	-----------------

SL. number	Order	Family	Scientific name	Common name	Local name	IUCN Status	Seasonal Abundance	Economic value
1			Gibelion catla	Catla	Bhakur	LC	TY	Food fish
2			Labeo bata	Bata labeo	Bata	LC	TY	Food fish
3			Labeo calbasu	Black rohu	Karonchi	LC	TY	Food fish
4			Labeo dero	Kalabans	Khaira	LC	SM	Food fish
5			Labeo rohita	Rohu	Rui	LC	TY	Food fish
6			Cirrihina reba	Reba carp	Raia	LC	SM	Food fish
7			Cirrhinus mrigala	Mrigal	Nain/ Mrigal	LC	RS	Food fish
8			Aspidoparia morar	Morar	Kenwachi	LC	WN	Food fish
9	Cypriniformes	Cyprinidae	Hypophthalmichthys nobilis	Bighead carp	Briged	DD	TY	Food fish
10			Ctenopharyngodon idella	Grass carp	Grass	DD	TY	Food fish
11			Cyprinus carpio	Common carp	China	VU	TY	Food fish
12			Esomus danricus	Flying barb	Dendua	LC	TY	Ornamental
13			Hypophthalmichthys molitrix	Silver carp	Silver	NT	TY	Food fish
14			Amblypharyngodon mola	Mola carplet	Dhawai	LC	SM	Food fish
15			Securicula gora	Dariyari	Chal	LC	WN	Food fish
16			Puntius sarana	Barb/ Olive barb	Puthiya	LC	TY	Food fish
17			Puntius sophore	Pool barb	Jatpunti	LC	SM	Ornamental
18			Puntius ticto	Ticto barb	Tit punti	LC	SM	Food fish/Ornamental
19		Siluridae	Wallago attu	Fresh water shark	Padhani/Barari	NT	WN	Food
20		Bagridae	Mystus bleekeri	Tengar catfish	Tengra	LC	WN	fish/Ornamental Food
21			Mystus cavasius	Gangetic mystus	Sutahawa	LC	SM	fish/Ornamental Food fish
22			Mystus tengara	Tengra catfish	tengra Tengana	LC	SM	Food fish
23			Sperata aor	Long whiskered catfish	Dariai tengara	LC	TY	Food fish
24			Sperata seenghala	Giant river catfis	Dariai tengara	LC	TY	Food fish
25	Siluriformes	Schilbeidae	Ailia coila	Gangetic ailia	Patasi/Minti	NT	RS	Food fish/Ornamental
26			Clupisoma garua	Garua	Baikari/Karahi	LC	TY	Food fish
27			Eutropiichthys vacha	Batchwa vacha	Banjhoo	LC	TY	Food fish
28		Pangasiidae	Pangasius pangasius	Pangas catfish	Payasi	LC	TY	Food fish/Ornamental
29		Heteropneustidae	Heteropneustes fossilis	Stinging catfish	Singhi	LC	SM	Food fish/Ornamental
30		Clariidae	Clarias batrachus	Air breathing catfish	Mangur	LC	SM	Food fish/Ornamental
31		Clupeidae	Gudusia chapra	Indian River Shad	Suhia	LC	TY	Food fish
			1	Ganga river				
32	Clupeiformes		Gonialosa manmina	gizzard shad Gangetic-hairfin	Majhali suhia	LC	TY	Food fish
33		Engraulidae	Setipinna phasa	anchovy Bronze	Phansi	LC	TY	Food fish Food
34	Osteoglossiformes	Notopteridae	Notopterus notopterus	featherback	Patra	LC	WN	fish/Ornamental
35	Mugiliformes	Mugilidae	Sicamugil cascasia	Yellowtail mullet	Yellowtail mullet	LC	RS	Food fish
36		Channidae	Channa gachua	Dwarf Snakehead	Chanaga	LC	TY	Food fish
37			Channa marulius	Great snakehead	Saur	LC	TY	Food fish
38			Channa punctata	Spotted snakehead	Girai	LC	TY	Food fish
39			Channa striatus	Asian snakehead	Sauri	LC	TY	Food fish
40	Perciformes	Ambassidae	Chanda nama	Elongate glass perchlet	Chanri	LC	TY	Food fish/Ornamental
41			Parambassis ranga	Indian Glassy Fish	Chanri	LC	WN	Food fish
42		Badidae	Nandus nandus	Gangetic leaffish	Dhebri	LC	RS	Food fish/Ornamental
43	1	Anabantidae	Anabas testudineus	Climbing perch	Kawai	DD	TY	Food fish
43		Osphronemidae	Trichogaster fasciata	Banded gourami	Khosti	LC	WS	Food IIsh Food fish/Ornamental
	ł			-				Food

WN= winter, SM = summer, TY = throughout the year, and RS = rainy season LC = least concern, VU= vulnerable, NT = near threatened and DD= data deficient.

Journal of Entomology and Zoology Studies

Highest percentage shared by family Cyprinidae 40.00% comprising fish species are *Gibelion catla*, *Labeo bata*, *Labeo calbasu*, *Labeo dero*, *Labeo rohita*, *Cirrhinus mrigala*, *Cirrhina reba*, *Aspidoparia morar*, *Hypophthalmichthys nobilis*, *Ctenopharyngodon idella*, *Puntius sarana*, *Puntius sophore* etc. Second largest share by family is Bagridae (11.11%) comprising fish species are *Mystus bleekeri*, *Mystus cavasius*, *Mystus tengara*, *Sperata aor*, *Sperata seenghala* followed by Channidae comprising four fish species *Channa gachua*, *Channa marulius*, *Channa punctata*, *Channa striatus*.

Sl. Number	Taxa	Number of species	Percentage (%)
1	Order: Cypriniformes	18	40.00
2	Order: Siluriformes	12	26.67
3	Order: Perciformes	9	20.00
4	Order: Clupeiformes	3	6.67
5	Order: Osteoglossiformes	1	2.22
6	Order: Mugiliformes	1	2.22
7	Order: Synbranchiformes	1	2.22
	Total	45	

Table 4: Composition of the fish community by order.

Family Schilbeidae comprises only three fish species Ailia coila, Clupisoma garua, and Eutropiichthys vacha family Ambassidae and Clupeidae shared only two species each. family Notopteridae, Mugilidae, Badidae. Other Osphronemidae, Mastacembelidae, Siluridae, Pangasiidae, Heteropneustidae, Clariidae, Engraulidae and Anabantidae contributed only one species each. The fisheries of lake and reservoire are based on relatively large number of species and a wide range of fishing gears and craft. Habitat degradation, invasion of exotic fishes and fishing pressure are the main causes for loss of fish biodiversity in aquatic ecosystem ^[13, 14]. Environmental stress and fishing pressure are reflected in the fish community composition and biodiversity of fishes ^[15]. However, more understanding and motivation is required on the value of indigenous fish diversity and conservation of aquatic resources to ensure the sharing of benefits of its utilization in an reasonable manner so that the aquatic ecosystem gets sufficient time to restore its natural community structure [14, 16].

Table 5: Composition of the fish community by family.

Sl.	Taxa	Number	Percentage
Number		of species	(%)
1	Family : Cyprinidae	18	40.00
2	Family : Bagridae	5	11.11
3	Family : Channidae	4	8.89
4	Family : Schilbeidae	3	6.67
5	Family : Ambassidae	2	4.44
6	Family : Clupeidae	2	4.44
7	Family : Notopteridae	1	2.22
8	Family : Mugilidae	1	2.22
9	Family : Badidae	1	2.22
10	Family : Osphronemidae	1	2.22
11	Family : Mastacembelidae	1	2.22
12	Family : Siluridae	1	2.22
13	Family : Pangasiidae	1	2.22
14	Family : Heteropneustidae	1	2.22
15	Family : Clariidae	1	2.22
16	Family : Engraulidae	1	2.22
17	Family : Anabantidae	1	2.22
	Total	45	

Conclusion

After whole year examine of Bakhira lake we were recorded the ichthyofaunal diversity and it was found that this lake is wealthy in ichthyofaunal diversity but conservation measure is also required. A fluctuation of physico- chemical parameters of this lake is directly or indirectly correlated with and biological productivity potential. Habitat degradation, anthropogenic activity, sewage disposal, etc are some of the reasons for adversely affecting the occurrence of ichthyofauna in this lake. Proper management of this lake may help to boost the fish production and habitat conservation.

Acknowledgements

Author is extremely thankful to Secretary; The Academy of Environmental Biology- India for providing laboratory facility. We are also thankful to Uttar Pradesh Council of Agricultural Research, for financial support.

References

- 1. Dhawan, Kaur S. Pig Dung as pond manure: effect on water quality, pond productivity and growth of carps in polyculture system, Naga (ICLARM Quarterly), 2002; 25(1):11-14,
- 2. Nansimole A, Sruthi S, Devi GTV, Radhakrishnan T. First report on fishery resources from four estuaries in Trivandrum district, Kerala, India. International Journal of Scientific Research. 2014; 3(12):129-131.
- APHA. Standard methods for examination of water and waste water, 21st ed. American Public Health Association, Washington, 2005
- 4. Jhingran VG. Fish and Fisheries of India Hindustan Publishing Corporation, 1991.
- 5. Day F. Report on the fish and fisheries of the Freshwater of India, Govt. Central Press, Simla, 1871, 49.
- Menon AGK. Check List Fresh Water Fishes of India. Occasional Paper No. 175. Records of the Zoological Survey of India, Kolkata, 1999, 366.
- 7. Jayaram KC. The freshwater fishes of the Indian Region. Narendra Publishing House, Delhi. 1999; 6:551.
- 8. Yousuf T, Ibrahim M, Majid H, Ahmad J, Vyas V. Ichthyofaunal diversity of Halali Reservoir, Vidisha, Madhya Pradesh, International Journal of Scientific and Research Publications. 2012; 2(12):1-7,
- 9. FAO Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome," The State of World Fisheries and Aquaculture, 2010, 15-116.
- 10. Santhosh B, Singh NP. Guidelines for water quality management for fish culture in Tripura, ICAR Research Complex for NEH Region, Tripura Center, Publication no.29, 2007.
- 11. Ranjan S, Yasmin S. Assessment of Ground water quality in Gaya region with respect to fluoride. Journal of Ecophysiogy Occupational and Health. 2012; 12:21-25.
- 12. Bhatnagar A, Singh G. Culture fisheries in village ponds: a multi-location study in Haryana, India. Agriculture and Biology Journal of North America. 2010; 1(5):961-968.
- Lakra WS, Singh AK, Ayyappan S. Fish Introductions in India: Status, Challenges and Potentials. Narendra Pub. House, New Delhi, 2008.
- Lakra WS. Fish biodiversity of Uttar Pradesh: issues of livelihood security, threats and conservation. In: National Conference on Biodiversity, Development and Poverty Alleviation (May 22, 2010). Uttar Pradesh State Biodiversity Board, Lucknow, 2010, 40-45.

Journal of Entomology and Zoology Studies

- 15. Dwivedi AC, Nautiyal P. Population dynamics of important fishes in the Vindnyan region, India. Lambert Academic Publication, Germany, 2010.
- 16. Lakra WS, Pandey AK. Fish germplasm resources of India with special emphasis on conservation and rehabilitation of threatened species. In: Goswami, U.C. and Dilip Kumar, eds, Aquaculture Management. Narendra Pub. House, Delhi, 2009, 85-104.