

E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2018; 6(3): 1156-1161 © 2018 JEZS Received: 08-03-2018 Accepted: 09-04-2018

Padala Vinod Kumar ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India

K Sreedevi ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India

#### Eldho Varghese

ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India

Correspondence K Sreedevi ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India

# Journal of Entomology and Zoology Studies

Available online at www.entomoljournal.com



# Morphometric variation among the populations of white grub, *Holotrichia consanguinea* Blanchard, (Coleoptera: Scarabaeidae) in India

## Padala Vinod Kumar, K Sreedevi and Eldho Varghese

#### Abstract

The white grub species *Holotrichia consanguinea* Blanchard, is cosmopolitan in distribution and a major pest of several economic crops. The present studies have been carried out to document the intraspecific variations among three different geographical populations of *H. consanguinea* in India. Morphometrics of 23 characters in males and 19 in females were studied from each population and the data were subjected to different statistical analyses *viz.*, univariate, multivariate, principal component analysis and discriminant function analysis. The various analyses revealed that maximum selected character states showed significant differences among all three populations. The principal component analysis revealed that PC1 and PC2 could explain 42.64% variation in males and 63.57% in females, which had loadings of five characters that can be useful in differentiating the three populations. The discriminant function analysis confirmed the worthiness of selected characters in differentiating the three populations of both male and female *H. consanguinea*. The territorial map drawn from two canonical discriminant functions showed the plots of three distinct populations indicating that significant differences exist among the three populations of *H. consanguinea*, which need to be explored further.

Keywords: Holotrichia consanguinea, intraspecific variation, morphometrics, white grub

#### Introduction

White grubs are the serious insect pests of several economic crops that belong to subfamilies Melolonthinae and Rutelinae of Scarabaeidae (Coleoptera). The genera Holotrichia and Anomala are the speciose of all in India that belongs to Melolonthinae and Rutelinae, respectively. The genus Holotrichia consists of more than 100 species in India that are widely distributed <sup>[1]</sup>. Of all, *H. consanguinea* is the major important pest that infests several crops such as groundnut, sugarcane, sorghum, maize, etc. It is the predominant species present in plains across the country. Several geographical populations of the species exhibit differences among or within populations that are considered as systematic uniqueness<sup>[2]</sup>. The distinctness can be generally associated with the variability of fitness in different individuals of the population <sup>[3]</sup>. Subsequently, examination of variability within and among various populations helps to understand the extent to which the contrasts among individuals lead to different races <sup>[4]</sup>. The correlation of differences in variability of similar organs and structures in individuals of various populations will yield a key to play major role in studies related to variability in populations <sup>[5]</sup>. Insects are great subjects for studies on morphological variety <sup>[6]</sup> and hence, the present study has been carried out to understand the intraspecific variation among different H. consanguinea populations through different statistical analyses.

#### Material and methods

#### **Collection and preparation of specimens**

Different populations of *H. consanguinea* were collected from the plains across the country *i.e.* parts of Andhra Pradesh, Rajasthan and Uttar Pradesh during May-July 2015. Collection of adult beetles was made during the night by using light traps with black and mercury light sources. Collected specimens were sorted out to remove damaged specimens and then sorted specimens were subjected to little warm water at 60 °C temperature in Sonicator for 5 minutes, then cleaned with camel hair brush to remove soil particles adhered to the body of the specimens. After cleaning, the specimens were kept for relaxation overnight in relaxation boxes. Next day morning, the specimens were pinned, stretched, labelled and placed in hot air oven at temperature about 60  $^{\circ}$ C for proper drying.

Journal of Entomology and Zoology Studies

Around 20 male and 30 female specimens, which are good in condition regarding their cleanliness, proper stretching and presence of all morphological characters selected randomly from each population for the present study. All specimens numbered individually and kept in insect box for further studies.

#### **Selection of characters**

A sum of 23 characters in males and 19 characters in females were studied for each population. All the ordered characters, includes both diagnostic key characters like clypeus, tibial spurs and general characters like tarsal segments, elytra etc.

#### Measurement of characters

Measurements were taken for all the characters separately for male and females of H. consanguinea. The calibration factor was derived by taking readings of ocular meter and stage micrometer to express it in mm. 20 specimens of males and 30 specimens of females of each species from each location were selected for this morphometric study. The length of full body was taken from tip of clypeus to end of the pygidium, length of head was taken from tip of clypeus to end of vertex, width of head was recorded inclusive of compound eyes, length of antennal segments were taken individually, width of clypeus was measured at middle of the clypeus, length and width of pronotum was measured across the centre, length of elytra was taken along the elytral suture, width of elytra was taken at the middle point, all tarsal segments measurement were taken individually, length of tibial spurs were taken from the base to tip. For genitalia studies, measurements of phallobase and parameres were carried out after extracting genitalia. The genitalia, after the morphometric measurements were put in a genital vial and pinned along with the adult specimen.

#### Statistical analysis

The different statistical analyses *viz.*, univariate analysis, multivariate analysis, principal component analysis (PCA) and discriminant function analysis (DFA) were carried for intraspecific variation studies.

Univariate study is a type of measurable, quantitative, assessment. This examination has been by utilized for investigation of every character independently in data set to discover noteworthy characters. Its sole object for existing is to depict one character at once. Sometimes, univariate investigations are inadequate in the evaluation of variability in natural populations because they don't reflect the conceivable relationships among characters in an individual in the populations <sup>[2]</sup>. Thus the characters that showed significance at P<0.01 were subjected to multivariate investigation (MANOVA), Principal component analysis (PCA) and discriminant function analysis (DFA).

Principal Component Analysis (PCA), most widely utilized strategy for dimensionality decline with broad applications to information reduction, The targets of this analysis, are to control or to reduce the dimensionality of the information set and to distinguish novel important characters. The first principal component signifies much of the variation in the data, and every after segment represents as a great part of the rest of the changeability as could reasonably be expected. In present study PCA was worked out up to six loadings to explain the degree of variety among the populations. Discriminant function analysis (DFA) was performed to estimate the utility of the characters selected <sup>[7]</sup>.

Softwares used were MS Excel for univariate analysis, SPSS for PCA and DFA and SAS for MANOVA.

#### **Result and discussion**

Univariate analysis done for each character for male and female to find out the significance has been presented in Table 1. The results showed that in male, all characters except length of head, length of pronotum, length of 1<sup>st</sup> tarsal segment and hind leg inner tibial spur exhibited significant differences among three populations and in female, all selected characters showed significant differences among three populations at the 5% level of significance.

Further, all 23 characters of males and 19 characters of females were subjected to multivariate analysis to test the significant differences among the three populations of male and female *H. consanguinea*. The results further confirmed that all the selected characters were significant, as evidenced by various statistical indices *viz.*, Wilks' Lambda, Pillai's Trace, Hotelling- Lawley Trace and Roy's greatest root at P<0.0001 (Table 2 and 3). This clearly depicted that the tested characters contributed significantly to differentiate the populations.

Every single selected character was subjected to Principal component (PC) analysis to lessen the proportions and discover the major cause of variation among three populations of H. consanguinea. In case of male H. consanguinea, the first six principal components that showed eigen values more than one accounted for 72.3% variation. Among six PCs, PC1 and PC2 explained 42.64% variation, while others account to less than 10% variation (Table 4), where PC1 that explained 26.1% variation has loadings of nine characters viz., total length of body, length of antennal scape, length of antennal funicle, length of antennal club, width of clypeus, length of elytra, length of phallobase, length of paramere, width of paramere and PC2 that explained 16.5% variation has loadings of five characters namely width of pronotum, length of second, third, fourth and fifth tarsal segment that can contribute to the variation, while others have loadings of less significant variables. The other variables namely length of head, width of head, length of antennal pedicel, length of pronotum, width of elytra at middle, length of the first tarsal segment, length of hind inner and outer tibial spurs, width of phallobase (values < 0.25 in first two PCs) are of lesser significance in explaining the morphological variation.

In case of female H. consanguinea populations, when 19 characters subjected to PCA analysis, the first four principal components amounted to 77.29% variation, where eigen values are more than one and PC1 and PC2 explained 63.570% variation, while others account for less than 10% variation (Table 5). The PC1 explained 46.69% variation that had loadings of nine characters viz., total length of body, width of head, length of antennal pedicel, length of antennal funicle, length of antennal club, width of clypeus, length of elytra, length of fourth tarsal segment and length of hind inner tibial spur while PC2 explained 16.88% variation that has loadings of five characters namely length of antennal scape, width of pronotum, length of first, second and third tarsal segment which can contribute to the variation. All others have loadings of less significant variables. The other variables namely length of head, length of pronotum, width of elytra at middle, length of fifth tarsal segment and length of hind outer tibial spur, (values < 0.25 in first two PCs) are of lesser significance in explaining the morphological variation. External variations other than sexual dimorphism among individuals are most ordinarily quantitative as opposed to subjective, as in geographic variety [8].

The discriminant function analysis (DFA) was carried out for male *H. consanguinea* to exploit the variation among the

groups, assessing the utility of characters and separate the groups. For this purpose cross validation of group membership was done to estimate the utility of characters used in analysis. The cross validation results showed that 100% of original grouped cases correctly classified; 100% of Andhra Pradesh population were correctly classified, where as in the case of Rajasthan population, 90% correctly classified and Uttar Pradesh population, 95% correctly classified. Overall 95% of cross-validated grouped cases correctly classified (Table 6), Similarly the cross validation results of

female *H. consanguinea* showed that 100% of original grouped cases correctly classified, 100% of all three populations were correctly classified, where Overall 100% of cross-validated grouped cases correctly classified (Table 7), this indicated high degree of utility of the characters used in grouping the population. The territorial map drawn from two canonical discriminant functions showed the plots of three distinct populations in male (Fig. 1) and female (Fig. 2) of *H. consanguinea*, which need to be explored further.

| S No  | Character                                | l           | Male           |                      | Female      |                |                      |  |
|-------|------------------------------------------|-------------|----------------|----------------------|-------------|----------------|----------------------|--|
| 5. NU | Character                                | Mean square | <b>F-value</b> | <b>Pr</b> > <b>F</b> | Mean square | <b>F-value</b> | <b>Pr</b> > <b>F</b> |  |
| 1     | Total length of body                     | 12.782      | 25.42          | <.0001               | 29.38       | 35.3           | <.0001               |  |
| 2     | Length of head                           | 0.023       | 0.71           | 0.4947               | 0.34        | 16.31          | <.0001               |  |
| 3     | Width of head                            | 0.226       | 14.17          | <.0001               | 7.18        | 502.8          | <.0001               |  |
| 4     | Length of antennal scape                 | 0.028       | 19.51          | <.0001               | 0.05        | 13.83          | <.0001               |  |
| 5     | Length of antennal pedicel               | 0.001       | 11.34          | <.0001               | 0.05        | 262.1          | <.0001               |  |
| 6     | Length of antennal funicle               | 0.064       | 40.33          | <.0001               | 1.06        | 959.2          | <.0001               |  |
| 7     | Length of antennal club                  | 0.097       | 33.72          | <.0001               | 0.87        | 302.5          | <.0001               |  |
| 8     | Width of clypeus                         | 0.369       | 75.56          | <.0001               | 2.32        | 291.1          | <.0001               |  |
| 9     | Length of pronotum                       | 0.174       | 2.1            | 0.132                | 0.35        | 7.64           | 0.0009               |  |
| 10    | Width of pronotum                        | 0.772       | 10.2           | 0.0002               | 1.09        | 24.89          | <.0001               |  |
| 11    | Length of elytra                         | 6.05        | 8.96           | 0.0004               | 57.6        | 89.97          | <.0001               |  |
| 12    | Width of elytra at middle                | 0.258       | 5.54           | 0.0063               | 0.15        | 4.03           | 0.0211               |  |
| 13    | Length of 1 <sup>st</sup> tarsal segment | 0.002       | 0.59           | 0.5581               | 0.03        | 5.8            | 0.0043               |  |
| 14    | Length of 2 <sup>nd</sup> tarsal segment | 0.187       | 50.01          | <.0001               | 0.14        | 16             | <.0001               |  |
| 15    | Length of 3 <sup>rd</sup> tarsal segment | 0.016       | 4.35           | 0.0174               | 0.22        | 38.46          | <.0001               |  |
| 16    | Length of 4 <sup>th</sup> tarsal segment | 0.033       | 10.72          | 0.0001               | 0.61        | 119.97         | <.0001               |  |
| 17    | Length of 5 <sup>th</sup> tarsal segment | 0.095       | 27.11          | <.0001               | 0.05        | 24.53          | <.0001               |  |
| 18    | Length of hind inner tibial spur         | 0.002       | 0.82           | 0.4459               | 0.43        | 59.12          | <.0001               |  |
| 19    | Length of hind outer tibial spur         | 0.029       | 5.2            | 0.0084               | 0.05        | 4.46           | 0.0143               |  |
| 20    | Length of phallobase                     | 0.056       | 13.03          | <.0001               |             |                |                      |  |
| 21    | Width of phallobase                      | 0.022       | 6.85           | 0.0022               |             |                |                      |  |
| 22    | Length of paramere                       | 0.041       | 5.54           | 0.0064               |             |                |                      |  |
| 23    | Width of paramere                        | 0.072       | 45.17          | <.0001               |             |                |                      |  |

Table 1: Univariate analysis for three populations of H. consanguinea

Table 2: Multivariate analysis (MANOVA) for male H. consanguinea

| Statistic               | Value  | F Value | Num DF | Den DF | <b>Pr</b> > <b>F</b> |
|-------------------------|--------|---------|--------|--------|----------------------|
| Wilks' Lambda           | 0.0062 | 17.84   | 46     | 70     | <.0001               |
| Pillai's Trace          | 1.80   | 14.48   | 46     | 72     | <.0001               |
| Hotelling- Lawley Trace | 29.57  | 21.95   | 46     | 59.841 | <.0001               |
| Roy's Greatest Root     | 24.129 | 37.77   | 23     | 36     | <.0001               |

Table 3: Multivariate analysis (MANOVA) for female H. consanguinea

| Statistic              | Value   | F Value | Num DF | Den DF | <b>Pr</b> > <b>F</b> |
|------------------------|---------|---------|--------|--------|----------------------|
| Wilks' Lambda          | 0.00060 | 144.52  | 38     | 138    | <.0001               |
| Pillai's Trace         | 1.94    | 118.22  | 38     | 140    | <.0001               |
| Hotelling-Lawley Trace | 98.60   | 176.77  | 38     | 120.78 | <.0001               |
| Roy's Greatest Root    | 78.72   | 290.03  | 19     | 70     | <.0001               |

| S. No | Character                                | PC1    | PC2    | PC3    | PC4    | PC5    | PC6    |
|-------|------------------------------------------|--------|--------|--------|--------|--------|--------|
| 1     | Total length of body                     | 0.271  | -0.171 | 0.214  | 0.27   | -0.144 | 0.06   |
| 2     | Length of head                           | 0.042  | 0.172  | -0.059 | -0.22  | -0.43  | 0.262  |
| 3     | Width of head                            | 0.219  | 0.239  | -0.223 | -0.003 | -0.149 | 0.208  |
| 4     | Length of antennal scape                 | 0.283  | -0.113 | 0.131  | 0.089  | -0.158 | -0.296 |
| 5     | Length of antennal pedicel               | 0.167  | -0.182 | 0.329  | 0.086  | 0.233  | 0.175  |
| 6     | Length of antennal funicle               | 0.339  | -0.065 | -0.05  | -0.147 | 0.149  | 0.194  |
| 7     | Length of antennal club                  | 0.302  | -0.1   | -0.098 | -0.15  | 0.192  | -0.042 |
| 8     | Width of clypeus                         | 0.35   | -0.1   | -0.13  | -0.135 | -0.006 | 0.055  |
| 9     | Length of pronotum                       | 0.131  | 0.214  | -0.265 | 0.344  | -0.068 | -0.082 |
| 10    | Width of pronotum                        | 0.038  | 0.375  | -0.031 | 0.268  | -0.129 | 0.114  |
| 11    | Length of elytra                         | 0.266  | -0.065 | 0.262  | 0.098  | -0.257 | 0.137  |
| 12    | Width of elytra at middle                | 0.205  | -0.042 | 0.065  | 0.17   | 0.042  | 0.507  |
| 13    | Length of 1st tarsal segment             | 0.096  | 0.084  | 0.376  | -0.13  | 0.341  | 0.079  |
| 14    | Length of 2 <sup>nd</sup> tarsal segment | -0.19  | 0.321  | 0.256  | 0.254  | 0.136  | 0.121  |
| 15    | Length of 3 <sup>rd</sup> tarsal segment | 0.019  | 0.284  | 0.413  | 0.1    | 0.161  | -0.1   |
| 16    | Length of 4 <sup>th</sup> tarsal segment | 0.102  | 0.302  | 0.052  | -0.083 | 0.196  | -0.275 |
| 17    | Length of 5 <sup>th</sup> tarsal segment | -0.012 | 0.432  | -0.105 | -0.002 | 0.103  | 0.104  |
| 18    | Length of hind inner tibial spur         | 0.078  | -0.113 | -0.247 | 0.457  | 0.107  | -0.02  |
| 19    | Length of hind outer tibial spur         | -0.078 | -0.212 | -0.215 | 0.452  | 0.288  | 0.037  |
| 20    | Length of phallobase                     | 0.291  | 0.238  | 0.074  | 0.052  | -0.174 | -0.081 |
| 21    | Width of phallobase                      | 0.118  | 0.151  | -0.269 | -0.153 | 0.406  | 0.248  |
| 22    | Length of paramere                       | 0.25   | 0.08   | 0.012  | 0.129  | -0.039 | -0.415 |
| 23    | Width of paramere                        | 0.283  | 0.098  | -0.161 | -0.137 | 0.212  | -0.264 |
|       | Eigen value                              | 6.00   | 3.8    | 2.12   | 1.818  | 1.604  | 1.29   |
|       | Percentage of variance                   | 26.1   | 16.5   | 9.2    | 7.9    | 6.97   | 5.61   |
|       | Cumulative percentage                    | 26.1   | 42.64  | 51.86  | 59.76  | 66.73  | 72.34  |

Table 5: Principal component loadings for 19 characters of H. consanguinea female populations

| S. No | Character                                | PC1    | PC2    | PC3    | PC4    | PC5    | PC6    |
|-------|------------------------------------------|--------|--------|--------|--------|--------|--------|
| 1     | Total length of body                     | 0.265  | -0.170 | 0.194  | -0.050 | 0.162  | -0.114 |
| 2     | Length of head                           | 0.149  | 0.163  | 0.304  | -0.471 | 0.391  | -0.360 |
| 3     | Width of head                            | 0.258  | -0.250 | -0.062 | 0.157  | 0.064  | 0.323  |
| 4     | Length of antennal scape                 | -0.010 | 0.458  | 0.071  | 0.149  | -0.206 | -0.043 |
| 5     | Length of antennal pedicel               | 0.308  | -0.129 | -0.129 | -0.082 | -0.063 | -0.034 |
| 6     | Length of antennal funicle               | 0.318  | -0.060 | -0.174 | -0.058 | -0.092 | 0.045  |
| 7     | Length of antennal club                  | 0.308  | -0.017 | -0.138 | -0.102 | -0.147 | -0.069 |
| 8     | Width of clypeus                         | 0.319  | -0.023 | -0.089 | -0.078 | -0.016 | 0.037  |
| 9     | Length of pronotum                       | 0.183  | 0.138  | 0.307  | -0.096 | -0.300 | 0.654  |
| 10    | Width of pronotum                        | 0.200  | 0.281  | 0.312  | -0.247 | -0.108 | -0.006 |
| 11    | Length of elytra                         | 0.294  | -0.037 | -0.037 | -0.187 | 0.016  | 0.016  |
| 12    | Width of elytra at middle                | 0.120  | -0.175 | 0.613  | 0.151  | 0.099  | 0.021  |
| 13    | Length of 1 <sup>st</sup> tarsal segment | 0.139  | 0.350  | -0.065 | 0.348  | 0.295  | 0.045  |
| 14    | Length of 2 <sup>nd</sup> tarsal segment | 0.005  | 0.513  | 0.056  | 0.100  | 0.075  | 0.157  |
| 15    | Length of 3 <sup>rd</sup> tarsal segment | 0.228  | 0.285  | -0.215 | 0.083  | 0.135  | -0.155 |
| 16    | Length of 4 <sup>th</sup> tarsal segment | 0.285  | 0.155  | -0.295 | 0.062  | 0.093  | 0.001  |
| 17    | Length of 5 <sup>th</sup> tarsal segment | 0.184  | -0.163 | 0.070  | 0.372  | 0.494  | 0.166  |
| 18    | Length of hind inner tibial spur         | 0.256  | -0.056 | -0.025 | 0.059  | -0.409 | -0.235 |
| 19    | Length of hind outer tibial spur         | 0.146  | -0.035 | 0.270  | 0.539  | -0.312 | -0.425 |
|       | Eigen value                              | 8.872  | 3.206  | 1.410  | 1.198  | 0.924  | 0.800  |
|       | Percentage of variance                   | 46.690 | 16.880 | 7.420  | 6.300  | 4.860  | 4.210  |
|       | Cumulative percentage                    | 46.690 | 63.570 | 70.990 | 77.290 | 82.150 | 86.360 |

Table 6: Classification results of cross-validation of group membership for male H. consanguinea

|                              |                   | Predie | Tatal |     |     |       |  |
|------------------------------|-------------------|--------|-------|-----|-----|-------|--|
|                              |                   |        | 1     | 2   | 3   | Total |  |
|                              |                   | 1      | 20    | 0   | 0   | 20    |  |
|                              | Count             | 2      | 0     | 20  | 0   | 20    |  |
| Original                     |                   | 3      | 0     | 0   | 20  | 20    |  |
| Oliginal                     | %                 | 1      | 100   | 0   | 0   | 100   |  |
|                              |                   | 2      | 0     | 100 | 0   | 100   |  |
|                              |                   | 3      | 0     | 0   | 100 | 100   |  |
|                              |                   | 1      | 20    | 0   | 0   | 20    |  |
|                              | Count             | 2      | 1     | 18  | 1   | 20    |  |
| Cross validated <sup>b</sup> |                   | 3      | 0     | 1   | 19  | 20    |  |
| Closs-validated              | % <u>1</u><br>% 2 | 1      | 100   | 0   | 0   | 100   |  |
|                              |                   | 2      | 5     | 90  | 5   | 100   |  |
|                              |                   | 3      | 0     | 5   | 95  | 100   |  |

Note: 1-Andhra Pradesh, 2-Rajasthan, 3-Uttar Pradesh populations

Table 7: Classification results of cross-validation of group membership for female H. consanguinea

|                  |       | Predie | Tatal |     |     |       |
|------------------|-------|--------|-------|-----|-----|-------|
|                  |       |        |       | 2   | 3   | Total |
|                  |       | 1      | 30    | 0   | 0   | 30    |
|                  | Count | 2      | 0     | 30  | 0   | 30    |
| Original         |       | 3      | 0     | 0   | 30  | 30    |
| Original         | %     | 1      | 100   | 0   | 0   | 100   |
|                  |       | 2      | 0     | 100 | 0   | 100   |
|                  |       | 3      | 0     | 0   | 100 | 100   |
|                  | Count | 1      | 30    | 0   | 0   | 30    |
|                  |       | 2      | 0     | 30  | 0   | 30    |
| Crease validated |       | 3      | 0     | 0   | 30  | 30    |
| Cross-validated  | %     | 1      | 100   | 0   | 0   | 100   |
|                  |       | 2      | 0     | 100 | 0   | 100   |
|                  |       | 3      | 0     | 0   | 100 | 100   |

Note: 1-Andhra Pradesh, 2-Rajasthan, 3-Uttar Pradesh populations



Note: 1-Andhra Pradesh, 2-Rajasthan, 3-Uttar Pradesh populations

Fig 1: Territorial map showing the plots of three populations of male H. consanguinea



Note: 1-Andhra Pradesh, 2-Rajasthan, 3-Uttar Pradesh populations

Fig 2: Territorial map showing the plots of three populations of female *H. consanguinea*  $\sim$  1160  $\sim$ 

#### Conclusion

The three populations of H. consanguinea exhibited significant morphometric variations as evidenced by various statistical analyses. In case of H. consanguinea males, 19 selected characters out of 23 characters showed significant differences and around 14 characters viz., total length of body, length of antennal scape, length of antennal funicle, length of antennal club, width of clypeus, width of pronotum, length of elytra, length of second, third, fourth and fifth tarsal segment, length of phallobase, length and width of paramere are identified as main basis that can contribute to the variation through principal component analysis. In case of H. consanguinea females, all 19 characters showing significant variation in univariate analysis were further confirmed by MANOVA and 14 characters viz., total length of body, width of head, length of antennal pedicel, length of antennal scape, length of antennal funicle, length of antennal club, width of clypeus, width of pronotum, length of elvtra, length of first, second, third, fourth tarsal segment and length of hind inner tibial spur are identified as main basis that can contribute to the variation, which needs to be explored further for its consistency. The three distinct populations as evidenced through territorial map indicates geographical isolation that aids in speciation process in due course of time.

### Acknowledgements

The study is a part of the post graduate research work of first author and the authors profusely thank the Director, Joint Director (Research), Dean and Joint Director (Education), ICAR-IARI, New Delhi. Thanks are also due to the Head, Division of Entomology and Professor, Division of Entomology, ICAR-IARI, New Delhi for facilitating the study and research work.

#### References

- 1. Mathur YS, Bhatnagar A, Singh S. Bioecology and management of phytophagous whitegrubs of India. Technical Bulletin-4. All India Network Project on Whitegrubs and Other Soil Arthropods, Agriculture Research Station, Durgapura, Jaipur, India, 2010.
- 2. Willig MR, Owen RD, Colbert RL. Assessment of morphometric variation in natural populations: the inadequacy of the univariate approach. Systematic Zoology. 1986; 35:195-203.
- 3. Bird J, Riska B, Sokal RR. Geographic variation in variability of Pemphigus poppulicaulis. Systematic Zoology. 1981; 30:58-70.
- 4. Gould SJ. Tempo and mode in the macroevolutionary reconstruction on Darwinism. 91, Proceedings of the National Academy of Sciences, USA, 1994, 6764-6771.
- 5. Soule ME. Allometric variation.1. The theory and some consequences. American Naturalist. 1982; 120:751-764.
- 6. Daly HV. Insect morphometrics. Annual Review of Entomology. 1985; 30:415-438.
- Sanmartin I, Piera FM. A morphometric approach to the taxonomy of the genus Ceramida (Coleoptera: Scarabaeoidea: Melolonthidae). Canadian Entomologist. 1999; 131:573-592.
- 8. Gould SJ, Johnston RF. Geographic variation. Annual Review of Ecology and Systematics. 1972; 3:357-398.